Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2308.02165
Cited By
Diffusion probabilistic models enhance variational autoencoder for crystal structure generative modeling
4 August 2023
T. Pakornchote
Natthaphon Choomphon-anomakhun
Sorrjit Arrerut
C. Atthapak
S. Khamkaeo
Thiparat Chotibut
T. Bovornratanaraks
DiffM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Diffusion probabilistic models enhance variational autoencoder for crystal structure generative modeling"
9 / 9 papers shown
Title
Learning Sparse Disentangled Representations for Multimodal Exclusion Retrieval
Prachi
Sumit Bhatia
Srikanta Bedathur
36
0
0
04 Apr 2025
FlowLLM: Flow Matching for Material Generation with Large Language Models as Base Distributions
Anuroop Sriram
Benjamin Kurt Miller
Ricky T. Q. Chen
Brandon M. Wood
AI4CE
42
14
0
30 Oct 2024
Exploring Selective Layer Fine-Tuning in Federated Learning
Yuchang Sun
Yuexiang Xie
Bolin Ding
Yaliang Li
Jun Zhang
FedML
32
2
0
28 Aug 2024
Scalable Diffusion for Materials Generation
Mengjiao Yang
KwangHwan Cho
Amil Merchant
Pieter Abbeel
Dale Schuurmans
Igor Mordatch
E. D. Cubuk
29
39
0
18 Oct 2023
Crystal-GFN: sampling crystals with desirable properties and constraints
Mila AI4Science
Alex Hernandez-Garcia
Alexandre Duval
Alexandra Volokhova
Yoshua Bengio
Divya Sharma
P. Carrier
Yasmine Benabed
Michal Koziarski
Victor Schmidt
141
18
0
07 Oct 2023
Star-Shaped Denoising Diffusion Probabilistic Models
Andrey Okhotin
Dmitry Molchanov
V. Arkhipkin
Grigory Bartosh
Viktor Ohanesian
Aibek Alanov
Dmitry Vetrov
DiffM
32
12
0
10 Feb 2023
Crystal Diffusion Variational Autoencoder for Periodic Material Generation
Tian Xie
Xiang Fu
O. Ganea
Regina Barzilay
Tommi Jaakkola
DiffM
BDL
212
232
0
12 Oct 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
174
1,106
0
27 Apr 2021
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
157
183
0
30 Apr 2018
1