ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.01746
  4. Cited By
Neural Collapse Terminus: A Unified Solution for Class Incremental
  Learning and Its Variants

Neural Collapse Terminus: A Unified Solution for Class Incremental Learning and Its Variants

3 August 2023
Yibo Yang
Haobo Yuan
Hefei Ling
Jianlong Wu
Lefei Zhang
Zhouchen Lin
Philip Torr
Dacheng Tao
Guohao Li
    CLL
ArXivPDFHTML

Papers citing "Neural Collapse Terminus: A Unified Solution for Class Incremental Learning and Its Variants"

39 / 39 papers shown
Title
CorDA: Context-Oriented Decomposition Adaptation of Large Language Models for Task-Aware Parameter-Efficient Fine-tuning
CorDA: Context-Oriented Decomposition Adaptation of Large Language Models for Task-Aware Parameter-Efficient Fine-tuning
Yibo Yang
Xiaojie Li
Zhongzhu Zhou
Shuaiwen Leon Song
Jianlong Wu
Liqiang Nie
Guohao Li
71
12
0
07 Jun 2024
Geometer: Graph Few-Shot Class-Incremental Learning via Prototype
  Representation
Geometer: Graph Few-Shot Class-Incremental Learning via Prototype Representation
Bin Lu
Xiaoying Gan
Lina Yang
Weinan Zhang
Luoyi Fu
Xinbing Wang
CLL
47
28
0
27 May 2022
Constrained Few-shot Class-incremental Learning
Constrained Few-shot Class-incremental Learning
Michael Hersche
G. Karunaratne
G. Cherubini
Luca Benini
Abu Sebastian
Abbas Rahimi
CLL
92
142
0
30 Mar 2022
Energy-based Latent Aligner for Incremental Learning
Energy-based Latent Aligner for Incremental Learning
K. J. Joseph
Salman Khan
Fahad Shahbaz Khan
Rao Muhammad Anwer
V. Balasubramanian
CLL
72
47
0
28 Mar 2022
Doodle It Yourself: Class Incremental Learning by Drawing a Few Sketches
Doodle It Yourself: Class Incremental Learning by Drawing a Few Sketches
A. Bhunia
Viswanatha Reddy Gajjala
Subhadeep Koley
Rohit Kundu
Aneeshan Sain
Tao Xiang
Yi-Zhe Song
CLL
65
30
0
28 Mar 2022
Federated Class-Incremental Learning
Federated Class-Incremental Learning
Jiahua Dong
Lixu Wang
Zhen Fang
Gan Sun
Shichao Xu
Tianlin Li
Qi Zhu
CLL
FedML
78
179
0
22 Mar 2022
CoReS: Compatible Representations via Stationarity
CoReS: Compatible Representations via Stationarity
Niccoló Biondi
F. Pernici
Matteo Bruni
A. Bimbo
OOD
45
9
0
15 Nov 2021
A Prototype-Oriented Framework for Unsupervised Domain Adaptation
A Prototype-Oriented Framework for Unsupervised Domain Adaptation
Korawat Tanwisuth
Xinjie Fan
Huangjie Zheng
Shujian Zhang
A. Leon-Garcia
Bo Chen
Mingyuan Zhou
94
103
0
22 Oct 2021
Learning Prototype-oriented Set Representations for Meta-Learning
Learning Prototype-oriented Set Representations for Meta-Learning
D. Guo
Longlong Tian
Minghe Zhang
Mingyuan Zhou
H. Zha
OOD
35
23
0
18 Oct 2021
Subspace Regularizers for Few-Shot Class Incremental Learning
Subspace Regularizers for Few-Shot Class Incremental Learning
Afra Feyza Akyürek
Ekin Akyürek
Derry Wijaya
Jacob Andreas
CLL
59
61
0
13 Oct 2021
An Unconstrained Layer-Peeled Perspective on Neural Collapse
An Unconstrained Layer-Peeled Perspective on Neural Collapse
Wenlong Ji
Yiping Lu
Yiliang Zhang
Zhun Deng
Weijie J. Su
161
86
0
06 Oct 2021
Co-Transport for Class-Incremental Learning
Co-Transport for Class-Incremental Learning
Da-Wei Zhou
Han-Jia Ye
De-Chuan Zhan
CLL
84
74
0
27 Jul 2021
On Learning the Geodesic Path for Incremental Learning
On Learning the Geodesic Path for Incremental Learning
Christian Simon
Piotr Koniusz
Mehrtash Harandi
CLL
55
121
0
17 Apr 2021
Few-Shot Incremental Learning with Continually Evolved Classifiers
Few-Shot Incremental Learning with Continually Evolved Classifiers
Chi Zhang
Nan Song
Guosheng Lin
Yun Zheng
Pan Pan
Yinghui Xu
CLL
75
293
0
07 Apr 2021
Distilling Causal Effect of Data in Class-Incremental Learning
Distilling Causal Effect of Data in Class-Incremental Learning
Xinting Hu
Kaihua Tang
Chunyan Miao
Xiansheng Hua
Hanwang Zhang
CML
228
175
0
02 Mar 2021
On Episodes, Prototypical Networks, and Few-shot Learning
On Episodes, Prototypical Networks, and Few-shot Learning
Steinar Laenen
Luca Bertinetto
69
99
0
17 Dec 2020
Neural Collapse with Cross-Entropy Loss
Neural Collapse with Cross-Entropy Loss
Jianfeng Lu
Stefan Steinerberger
MLT
47
65
0
15 Dec 2020
Neural collapse with unconstrained features
Neural collapse with unconstrained features
D. Mixon
Hans Parshall
Jianzong Pi
59
120
0
23 Nov 2020
Adaptive Aggregation Networks for Class-Incremental Learning
Adaptive Aggregation Networks for Class-Incremental Learning
Yaoyao Liu
Bernt Schiele
Qianru Sun
CLL
92
217
0
10 Oct 2020
Prevalence of Neural Collapse during the terminal phase of deep learning
  training
Prevalence of Neural Collapse during the terminal phase of deep learning training
Vardan Papyan
Xuemei Han
D. Donoho
172
572
0
18 Aug 2020
Feature Space Augmentation for Long-Tailed Data
Feature Space Augmentation for Long-Tailed Data
Peng Chu
Xiao Bian
Shaopeng Liu
Haibin Ling
71
240
0
09 Aug 2020
Understanding the Role of Training Regimes in Continual Learning
Understanding the Role of Training Regimes in Continual Learning
Seyed Iman Mirzadeh
Mehrdad Farajtabar
Razvan Pascanu
H. Ghasemzadeh
CLL
67
225
0
12 Jun 2020
Few-Shot Class-Incremental Learning
Few-Shot Class-Incremental Learning
Xiaoyu Tao
Xiaopeng Hong
Xinyuan Chang
Songlin Dong
Xing Wei
Yihong Gong
CLL
86
409
0
23 Apr 2020
Semantic Drift Compensation for Class-Incremental Learning
Semantic Drift Compensation for Class-Incremental Learning
Lu Yu
Bartlomiej Twardowski
Xialei Liu
Luis Herranz
Kai Wang
Yongmei Cheng
Shangling Jui
Joost van de Weijer
CLL
76
341
0
01 Apr 2020
Negative Margin Matters: Understanding Margin in Few-shot Classification
Negative Margin Matters: Understanding Margin in Few-shot Classification
Bin Liu
Yue Cao
Yutong Lin
Qi Li
Zheng Zhang
Mingsheng Long
Han Hu
80
322
0
26 Mar 2020
Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion
Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion
Hongxu Yin
Pavlo Molchanov
Zhizhong Li
J. Álvarez
Arun Mallya
Derek Hoiem
N. Jha
Jan Kautz
62
563
0
18 Dec 2019
Maintaining Discrimination and Fairness in Class Incremental Learning
Maintaining Discrimination and Fairness in Class Incremental Learning
Bowen Zhao
Xi Xiao
Guojun Gan
Bin Zhang
Shutao Xia
CLL
111
425
0
16 Nov 2019
Decoupling Representation and Classifier for Long-Tailed Recognition
Decoupling Representation and Classifier for Long-Tailed Recognition
Bingyi Kang
Saining Xie
Marcus Rohrbach
Zhicheng Yan
Albert Gordo
Jiashi Feng
Yannis Kalantidis
OODD
172
1,213
0
21 Oct 2019
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
Kaidi Cao
Colin Wei
Adrien Gaidon
Nikos Arechiga
Tengyu Ma
107
1,594
0
18 Jun 2019
Large Scale Incremental Learning
Large Scale Incremental Learning
Yue Wu
Yinpeng Chen
Lijuan Wang
Yuancheng Ye
Zicheng Liu
Yandong Guo
Y. Fu
CLL
89
1,249
0
30 May 2019
Incremental Few-Shot Learning with Attention Attractor Networks
Incremental Few-Shot Learning with Attention Attractor Networks
Mengye Ren
Renjie Liao
Ethan Fetaya
R. Zemel
CLL
86
181
0
16 Oct 2018
End-to-End Incremental Learning
End-to-End Incremental Learning
F. M. Castro
M. Marín-Jiménez
Nicolás Guil Mata
Cordelia Schmid
Alahari Karteek
CLL
85
1,153
0
25 Jul 2018
Dynamic Few-Shot Visual Learning without Forgetting
Dynamic Few-Shot Visual Learning without Forgetting
Spyros Gidaris
N. Komodakis
VLM
59
1,129
0
25 Apr 2018
Memory Aware Synapses: Learning what (not) to forget
Memory Aware Synapses: Learning what (not) to forget
Rahaf Aljundi
F. Babiloni
Mohamed Elhoseiny
Marcus Rohrbach
Tinne Tuytelaars
KELM
CLL
83
1,628
0
27 Nov 2017
Learning to Compare: Relation Network for Few-Shot Learning
Learning to Compare: Relation Network for Few-Shot Learning
Flood Sung
Yongxin Yang
Li Zhang
Tao Xiang
Philip Torr
Timothy M. Hospedales
261
4,042
0
16 Nov 2017
Learning without Forgetting
Learning without Forgetting
Zhizhong Li
Derek Hoiem
CLL
OOD
SSL
282
4,391
0
29 Jun 2016
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
341
7,316
0
13 Jun 2016
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.5K
39,472
0
01 Sep 2014
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based
  Neural Networks
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks
Ian Goodfellow
M. Berk Mirza
Xia Da
Aaron Courville
Yoshua Bengio
137
1,439
0
21 Dec 2013
1