ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.00942
  4. Cited By
On the use of deep learning for phase recovery

On the use of deep learning for phase recovery

2 August 2023
Kaiqiang Wang
Li Song
Chutian Wang
Zhenbo Ren
Guangyuan Zhao
Jiazhen Dou
Jianglei Di
George Barbastathis
Renjie Zhou
Jianlin Zhao
E. Lam
ArXivPDFHTML

Papers citing "On the use of deep learning for phase recovery"

5 / 5 papers shown
Title
Towards Robust and Generalizable Gerchberg Saxton based Physics Inspired Neural Networks for Computer Generated Holography: A Sensitivity Analysis Framework
Towards Robust and Generalizable Gerchberg Saxton based Physics Inspired Neural Networks for Computer Generated Holography: A Sensitivity Analysis Framework
Ankit Amrutkar
Björn Kampa
Volkmar Schulz
Johannes Stegmaier
Markus Rothermel
Dorit Merhof
18
0
0
30 Apr 2025
Diffractive all-optical computing for quantitative phase imaging
Diffractive all-optical computing for quantitative phase imaging
Deniz Mengu
A. Ozcan
34
66
0
22 Jan 2022
Multi-Stage Progressive Image Restoration
Multi-Stage Progressive Image Restoration
Syed Waqas Zamir
Aditya Arora
Salman Khan
Munawar Hayat
F. Khan
Ming-Hsuan Yang
Ling Shao
125
1,450
0
04 Feb 2021
Inverse Problems, Deep Learning, and Symmetry Breaking
Inverse Problems, Deep Learning, and Symmetry Breaking
Kshitij Tayal
Chieh-Hsin Lai
Vipin Kumar
Ju Sun
AI4CE
72
15
0
20 Mar 2020
All-Optical Machine Learning Using Diffractive Deep Neural Networks
All-Optical Machine Learning Using Diffractive Deep Neural Networks
Xing Lin
Y. Rivenson
N. Yardimci
Muhammed Veli
Mona Jarrahi
Aydogan Ozcan
76
1,628
0
14 Apr 2018
1