ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.13239
  4. Cited By
RoSAS: Deep Semi-Supervised Anomaly Detection with
  Contamination-Resilient Continuous Supervision

RoSAS: Deep Semi-Supervised Anomaly Detection with Contamination-Resilient Continuous Supervision

25 July 2023
Hongzuo Xu
Yijie Wang
Guansong Pang
Songlei Jian
Ninghui Liu
Yongjun Wang
ArXivPDFHTML

Papers citing "RoSAS: Deep Semi-Supervised Anomaly Detection with Contamination-Resilient Continuous Supervision"

8 / 8 papers shown
Title
Decomposition-based multi-scale transformer framework for time series anomaly detection
Decomposition-based multi-scale transformer framework for time series anomaly detection
Wenxin Zhang
Cuicui Luo
AI4TS
47
0
0
19 Apr 2025
Catching Both Gray and Black Swans: Open-set Supervised Anomaly
  Detection
Catching Both Gray and Black Swans: Open-set Supervised Anomaly Detection
Choubo Ding
Guansong Pang
Chunhua Shen
OOD
29
113
0
28 Mar 2022
TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML
  scenarios
TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios
T. Barbariol
Gian Antonio Susto
27
21
0
30 Nov 2021
Explainable Deep Few-shot Anomaly Detection with Deviation Networks
Explainable Deep Few-shot Anomaly Detection with Deviation Networks
Guansong Pang
Choubo Ding
Chunhua Shen
Anton Van Den Hengel
57
87
0
01 Aug 2021
Neural Contextual Anomaly Detection for Time Series
Neural Contextual Anomaly Detection for Time Series
Chris U. Carmona
Franccois-Xavier Aubet
Valentin Flunkert
Jan Gasthaus
BDL
AI4TS
73
65
0
16 Jul 2021
Deep Learning for Anomaly Detection: A Review
Deep Learning for Anomaly Detection: A Review
Guansong Pang
Chunhua Shen
LongBing Cao
Anton Van Den Hengel
64
910
0
06 Jul 2020
Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
  Detection
Self-trained Deep Ordinal Regression for End-to-End Video Anomaly Detection
Guansong Pang
Cheng Yan
Chunhua Shen
Anton Van Den Hengel
Xiao Bai
32
209
0
15 Mar 2020
Deep Semi-Supervised Anomaly Detection
Deep Semi-Supervised Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Nico Görnitz
Alexander Binder
Emmanuel Müller
K. Müller
Marius Kloft
UQCV
27
543
0
06 Jun 2019
1