ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.13149
  4. Cited By
Discovering interpretable elastoplasticity models via the neural
  polynomial method enabled symbolic regressions

Discovering interpretable elastoplasticity models via the neural polynomial method enabled symbolic regressions

24 July 2023
B. Bahmani
H. S. Suh
WaiChing Sun
ArXivPDFHTML

Papers citing "Discovering interpretable elastoplasticity models via the neural polynomial method enabled symbolic regressions"

1 / 1 papers shown
Title
Data-driven discovery of interpretable causal relations for deep
  learning material laws with uncertainty propagation
Data-driven discovery of interpretable causal relations for deep learning material laws with uncertainty propagation
Xiao Sun
B. Bahmani
Nikolaos N. Vlassis
WaiChing Sun
Yanxun Xu
CML
AI4CE
63
26
0
20 May 2021
1