Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2307.13147
Cited By
Extending Path-Dependent NJ-ODEs to Noisy Observations and a Dependent Observation Framework
24 July 2023
William Andersson
Jakob Heiss
Florian Krach
Josef Teichmann
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Extending Path-Dependent NJ-ODEs to Noisy Observations and a Dependent Observation Framework"
10 / 10 papers shown
Title
How (Implicit) Regularization of ReLU Neural Networks Characterizes the Learned Function -- Part II: the Multi-D Case of Two Layers with Random First Layer
Jakob Heiss
Josef Teichmann
Hanna Wutte
AI4CE
54
2
0
20 Mar 2023
How Infinitely Wide Neural Networks Can Benefit from Multi-task Learning -- an Exact Macroscopic Characterization
Jakob Heiss
Josef Teichmann
Hanna Wutte
MLT
37
2
0
31 Dec 2021
Variational Marginal Particle Filters
Jinlin Lai
Justin Domke
Daniel Sheldon
54
9
0
30 Sep 2021
What Kinds of Functions do Deep Neural Networks Learn? Insights from Variational Spline Theory
Rahul Parhi
Robert D. Nowak
MLT
60
71
0
07 May 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
69
68
0
15 Feb 2021
Neural Rough Differential Equations for Long Time Series
James Morrill
C. Salvi
Patrick Kidger
James Foster
Terry Lyons
AI4TS
66
132
0
17 Sep 2020
Neural Controlled Differential Equations for Irregular Time Series
Patrick Kidger
James Morrill
James Foster
Terry Lyons
AI4TS
92
472
0
18 May 2020
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
E. Brouwer
Jaak Simm
Adam Arany
Yves Moreau
SyDa
CML
AI4TS
91
295
0
29 May 2019
How do infinite width bounded norm networks look in function space?
Pedro H. P. Savarese
Itay Evron
Daniel Soudry
Nathan Srebro
72
165
0
13 Feb 2019
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
225
210
0
25 May 2017
1