ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.11782
  4. Cited By
Convergence of Adam for Non-convex Objectives: Relaxed Hyperparameters
  and Non-ergodic Case

Convergence of Adam for Non-convex Objectives: Relaxed Hyperparameters and Non-ergodic Case

20 July 2023
Meixuan He
Yuqing Liang
Jinlan Liu
Dongpo Xu
ArXivPDFHTML

Papers citing "Convergence of Adam for Non-convex Objectives: Relaxed Hyperparameters and Non-ergodic Case"

9 / 9 papers shown
Title
Sharp higher order convergence rates for the Adam optimizer
Sharp higher order convergence rates for the Adam optimizer
Steffen Dereich
Arnulf Jentzen
Adrian Riekert
ODL
61
0
0
28 Apr 2025
LDAdam: Adaptive Optimization from Low-Dimensional Gradient Statistics
LDAdam: Adaptive Optimization from Low-Dimensional Gradient Statistics
Thomas Robert
M. Safaryan
Ionut-Vlad Modoranu
Dan Alistarh
ODL
36
2
0
21 Oct 2024
An Attention-Based Algorithm for Gravity Adaptation Zone Calibration
An Attention-Based Algorithm for Gravity Adaptation Zone Calibration
Chen Yu
19
0
0
06 Oct 2024
MicroAdam: Accurate Adaptive Optimization with Low Space Overhead and
  Provable Convergence
MicroAdam: Accurate Adaptive Optimization with Low Space Overhead and Provable Convergence
Ionut-Vlad Modoranu
M. Safaryan
Grigory Malinovsky
Eldar Kurtic
Thomas Robert
Peter Richtárik
Dan Alistarh
MQ
42
12
0
24 May 2024
On the Convergence of Adam under Non-uniform Smoothness: Separability
  from SGDM and Beyond
On the Convergence of Adam under Non-uniform Smoothness: Separability from SGDM and Beyond
Bohan Wang
Huishuai Zhang
Qi Meng
Ruoyu Sun
Zhi-Ming Ma
Wei Chen
37
7
0
22 Mar 2024
Stochastic Gradient Descent with Dependent Data for Offline
  Reinforcement Learning
Stochastic Gradient Descent with Dependent Data for Offline Reinforcement Learning
Jing-rong Dong
Xin T. Tong
OffRL
29
2
0
06 Feb 2022
A Simple Convergence Proof of Adam and Adagrad
A Simple Convergence Proof of Adam and Adagrad
Alexandre Défossez
Léon Bottou
Francis R. Bach
Nicolas Usunier
56
143
0
05 Mar 2020
New Convergence Aspects of Stochastic Gradient Algorithms
New Convergence Aspects of Stochastic Gradient Algorithms
Lam M. Nguyen
Phuong Ha Nguyen
Peter Richtárik
K. Scheinberg
Martin Takáč
Marten van Dijk
23
66
0
10 Nov 2018
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,201
0
16 Aug 2016
1