ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.11654
  4. Cited By
FEDD -- Fair, Efficient, and Diverse Diffusion-based Lesion Segmentation
  and Malignancy Classification

FEDD -- Fair, Efficient, and Diverse Diffusion-based Lesion Segmentation and Malignancy Classification

21 July 2023
Héctor Carrión
Narges Norouzi
    DiffM
    MedIm
ArXivPDFHTML

Papers citing "FEDD -- Fair, Efficient, and Diverse Diffusion-based Lesion Segmentation and Malignancy Classification"

4 / 4 papers shown
Title
Disparities in Dermatology AI Performance on a Diverse, Curated Clinical
  Image Set
Disparities in Dermatology AI Performance on a Diverse, Curated Clinical Image Set
Roxana Daneshjou
Kailas Vodrahalli
R. Novoa
Melissa Jenkins
Weixin Liang
...
Rachna Sahasrabudhe
Johan A. C. Allerup
Utako Okata-Karigane
James Zou
A. Chiou
50
217
0
15 Mar 2022
Label-Efficient Semantic Segmentation with Diffusion Models
Label-Efficient Semantic Segmentation with Diffusion Models
Dmitry Baranchuk
Ivan Rubachev
A. Voynov
Valentin Khrulkov
Artem Babenko
DiffM
VLM
195
516
0
06 Dec 2021
Evaluating Deep Neural Networks Trained on Clinical Images in
  Dermatology with the Fitzpatrick 17k Dataset
Evaluating Deep Neural Networks Trained on Clinical Images in Dermatology with the Fitzpatrick 17k Dataset
Matthew Groh
Caleb Harris
L. Soenksen
Felix Lau
Rachel Han
Aerin Kim
A. Koochek
Omar Badri
112
182
0
20 Apr 2021
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
267
36,371
0
25 Aug 2016
1