Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2307.10870
Cited By
Nonlinear Meta-Learning Can Guarantee Faster Rates
20 July 2023
Dimitri Meunier
Zhu Li
Arthur Gretton
Samory Kpotufe
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Nonlinear Meta-Learning Can Guarantee Faster Rates"
39 / 39 papers shown
Title
Guarantees for Nonlinear Representation Learning: Non-identical Covariates, Dependent Data, Fewer Samples
Thomas T. Zhang
Bruce D. Lee
Ingvar M. Ziemann
George J. Pappas
Nikolai Matni
CML
OOD
105
0
0
15 Oct 2024
Learning with Shared Representations: Statistical Rates and Efficient Algorithms
Xiaochun Niu
Lili Su
Jiaming Xu
Pengkun Yang
FedML
51
2
0
07 Sep 2024
Transformers are Minimax Optimal Nonparametric In-Context Learners
Juno Kim
Tai Nakamaki
Taiji Suzuki
79
13
0
22 Aug 2024
Metalearning with Very Few Samples Per Task
Maryam Aliakbarpour
Konstantina Bairaktari
Gavin Brown
Adam D. Smith
Nathan Srebro
Jonathan Ullman
VLM
86
3
0
21 Dec 2023
Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm
Zhu Li
Dimitri Meunier
Mattes Mollenhauer
Arthur Gretton
99
8
0
12 Dec 2023
Meta-Learning Operators to Optimality from Multi-Task Non-IID Data
Thomas T. Zhang
Leonardo F. Toso
James Anderson
Nikolai Matni
94
13
0
08 Aug 2023
Optimally tackling covariate shift in RKHS-based nonparametric regression
Cong Ma
Reese Pathak
Martin J. Wainwright
33
44
0
06 May 2022
An elementary analysis of ridge regression with random design
Jaouad Mourtada
Lorenzo Rosasco
46
11
0
16 Mar 2022
Meta-strategy for Learning Tuning Parameters with Guarantees
Dimitri Meunier
Pierre Alquier
69
8
0
04 Feb 2021
A Distribution-Dependent Analysis of Meta-Learning
Mikhail Konobeev
Ilja Kuzborskij
Csaba Szepesvári
OOD
59
5
0
31 Oct 2020
On the Theory of Transfer Learning: The Importance of Task Diversity
Nilesh Tripuraneni
Michael I. Jordan
Chi Jin
100
219
0
20 Jun 2020
Learning Polynomials of Few Relevant Dimensions
Sitan Chen
Raghu Meka
41
39
0
28 Apr 2020
Provable Meta-Learning of Linear Representations
Nilesh Tripuraneni
Chi Jin
Michael I. Jordan
OOD
100
191
0
26 Feb 2020
Few-Shot Learning via Learning the Representation, Provably
S. Du
Wei Hu
Sham Kakade
Jason D. Lee
Qi Lei
SSL
46
260
0
21 Feb 2020
Meta-learning for mixed linear regression
Weihao Kong
Raghav Somani
Zhao Song
Sham Kakade
Sewoong Oh
56
66
0
20 Feb 2020
Adaptive Gradient-Based Meta-Learning Methods
M. Khodak
Maria-Florina Balcan
Ameet Talwalkar
FedML
80
355
0
06 Jun 2019
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
45
243
0
27 Apr 2019
Eigenvalue and Generalized Eigenvalue Problems: Tutorial
Benyamin Ghojogh
Fakhri Karray
Mark Crowley
53
124
0
25 Mar 2019
Learning-to-Learn Stochastic Gradient Descent with Biased Regularization
Giulia Denevi
C. Ciliberto
Riccardo Grazzi
Massimiliano Pontil
67
110
0
25 Mar 2019
Online Meta-Learning
Chelsea Finn
Aravind Rajeswaran
Sham Kakade
Sergey Levine
CLL
63
253
0
22 Feb 2019
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
Motonobu Kanagawa
Philipp Hennig
Dino Sejdinovic
Bharath K. Sriperumbudur
GP
BDL
126
342
0
06 Jul 2018
Domain Generalization by Marginal Transfer Learning
Gilles Blanchard
A. Deshmukh
Ürün Dogan
Gyemin Lee
Clayton Scott
OOD
85
285
0
21 Nov 2017
Convergence Analysis of Deterministic Kernel-Based Quadrature Rules in Misspecified Settings
Motonobu Kanagawa
Bharath K. Sriperumbudur
Kenji Fukumizu
78
45
0
01 Sep 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
813
11,894
0
09 Mar 2017
Sobolev Norm Learning Rates for Regularized Least-Squares Algorithm
Simon Fischer
Ingo Steinwart
170
151
0
23 Feb 2017
Optimal Rates For Regularization Of Statistical Inverse Learning Problems
Gilles Blanchard
Nicole Mücke
439
143
0
14 Apr 2016
Generalization Properties of Learning with Random Features
Alessandro Rudi
Lorenzo Rosasco
MLT
68
331
0
14 Feb 2016
Less is More: Nyström Computational Regularization
Alessandro Rudi
Raffaello Camoriano
Lorenzo Rosasco
43
277
0
16 Jul 2015
The Benefit of Multitask Representation Learning
Andreas Maurer
Massimiliano Pontil
Bernardino Romera-Paredes
SSL
102
375
0
23 May 2015
A chain rule for the expected suprema of Gaussian processes
Andreas Maurer
58
24
0
10 Nov 2014
A useful variant of the Davis--Kahan theorem for statisticians
Yi Yu
Tengyao Wang
R. Samworth
92
577
0
04 May 2014
Divide and Conquer Kernel Ridge Regression: A Distributed Algorithm with Minimax Optimal Rates
Yuchen Zhang
John C. Duchi
Martin J. Wainwright
320
378
0
22 May 2013
Principal support vector machines for linear and nonlinear sufficient dimension reduction
Bing Li
A. Artemiou
Lexin Li
75
105
0
13 Mar 2012
Spectral clustering and the high-dimensional stochastic blockmodel
Karl Rohe
S. Chatterjee
Bin Yu
252
934
0
09 Jul 2010
Universality, Characteristic Kernels and RKHS Embedding of Measures
Bharath K. Sriperumbudur
Kenji Fukumizu
Gert R. G. Lanckriet
213
530
0
03 Mar 2010
Kernel dimension reduction in regression
Kenji Fukumizu
Francis R. Bach
Michael I. Jordan
211
313
0
13 Aug 2009
Dimension reduction for nonelliptically distributed predictors
Bing Li
Yuexiao Dong
76
114
0
24 Apr 2009
Domain Adaptation: Learning Bounds and Algorithms
Yishay Mansour
M. Mohri
Afshin Rostamizadeh
292
799
0
19 Feb 2009
A Tutorial on Spectral Clustering
U. V. Luxburg
277
10,532
0
01 Nov 2007
1