ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.08232
  4. Cited By
Learning for Counterfactual Fairness from Observational Data

Learning for Counterfactual Fairness from Observational Data

17 July 2023
Jing Ma
Ruocheng Guo
Aidong Zhang
Jundong Li
    FaML
ArXiv (abs)PDFHTML

Papers citing "Learning for Counterfactual Fairness from Observational Data"

20 / 20 papers shown
Title
Counterfactual Invariance to Spurious Correlations: Why and How to Pass
  Stress Tests
Counterfactual Invariance to Spurious Correlations: Why and How to Pass Stress Tests
Victor Veitch
Alexander DÁmour
Steve Yadlowsky
Jacob Eisenstein
OOD
55
93
0
31 May 2021
Out-of-distribution Prediction with Invariant Risk Minimization: The
  Limitation and An Effective Fix
Out-of-distribution Prediction with Invariant Risk Minimization: The Limitation and An Effective Fix
Ruocheng Guo
Pengchuan Zhang
Hao Liu
Emre Kıcıman
OOD
73
37
0
16 Jan 2021
Fairness in Machine Learning
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
282
494
0
31 Dec 2020
Counterfactual Fairness with Disentangled Causal Effect Variational
  Autoencoder
Counterfactual Fairness with Disentangled Causal Effect Variational Autoencoder
Hyemi Kim
Seungjae Shin
Joonho Jang
Kyungwoo Song
Weonyoung Joo
Wanmo Kang
Il-Chul Moon
BDLCML
71
57
0
24 Nov 2020
Survey on Causal-based Machine Learning Fairness Notions
Survey on Causal-based Machine Learning Fairness Notions
K. Makhlouf
Sami Zhioua
C. Palamidessi
FaML
51
85
0
19 Oct 2020
Environment Inference for Invariant Learning
Environment Inference for Invariant Learning
Elliot Creager
J. Jacobsen
R. Zemel
OOD
61
382
0
14 Oct 2020
Adversarial Learning for Counterfactual Fairness
Adversarial Learning for Counterfactual Fairness
Vincent Grari
Sylvain Lamprier
Marcin Detyniecki
FaML
47
23
0
30 Aug 2020
Domain Generalization using Causal Matching
Domain Generalization using Causal Matching
Divyat Mahajan
Shruti Tople
Amit Sharma
OOD
89
336
0
12 Jun 2020
Enforcing Predictive Invariance across Structured Biomedical Domains
Enforcing Predictive Invariance across Structured Biomedical Domains
Wengong Jin
Regina Barzilay
Tommi Jaakkola
OOD
59
30
0
06 Jun 2020
Distributionally Robust Neural Networks for Group Shifts: On the
  Importance of Regularization for Worst-Case Generalization
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
Shiori Sagawa
Pang Wei Koh
Tatsunori B. Hashimoto
Percy Liang
OOD
108
1,243
0
20 Nov 2019
Invariant Risk Minimization
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
186
2,229
0
05 Jul 2019
Fairness-Aware Ranking in Search & Recommendation Systems with
  Application to LinkedIn Talent Search
Fairness-Aware Ranking in Search & Recommendation Systems with Application to LinkedIn Talent Search
S. Geyik
Stuart Ambler
K. Kenthapadi
92
382
0
30 Apr 2019
The Frontiers of Fairness in Machine Learning
The Frontiers of Fairness in Machine Learning
Alexandra Chouldechova
Aaron Roth
FaML
187
416
0
20 Oct 2018
Pyro: Deep Universal Probabilistic Programming
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDLGP
157
1,054
0
18 Oct 2018
Fairness in Criminal Justice Risk Assessments: The State of the Art
Fairness in Criminal Justice Risk Assessments: The State of the Art
R. Berk
Hoda Heidari
S. Jabbari
Michael Kearns
Aaron Roth
51
995
0
27 Mar 2017
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
300
2,114
0
24 Oct 2016
Equality of Opportunity in Supervised Learning
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
228
4,312
0
07 Oct 2016
Learning Transferable Features with Deep Adaptation Networks
Learning Transferable Features with Deep Adaptation Networks
Mingsheng Long
Yue Cao
Jianmin Wang
Michael I. Jordan
OOD
220
5,206
0
10 Feb 2015
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,929
0
20 Dec 2013
Program Evaluation and Causal Inference with High-Dimensional Data
Program Evaluation and Causal Inference with High-Dimensional Data
A. Belloni
Victor Chernozhukov
Iván Fernández-Val
Christian B. Hansen
CML
190
358
0
11 Nov 2013
1