Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2307.07873
Cited By
Why Does Little Robustness Help? Understanding and Improving Adversarial Transferability from Surrogate Training
15 July 2023
Yechao Zhang
Shengshan Hu
Leo Yu Zhang
Junyu Shi
Minghui Li
Xiaogeng Liu
Wei Wan
Hai Jin
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Why Does Little Robustness Help? Understanding and Improving Adversarial Transferability from Surrogate Training"
30 / 80 papers shown
Title
Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks
Wei-An Lin
Chun Pong Lau
Alexander Levine
Ramalingam Chellappa
Soheil Feizi
AAML
83
60
0
05 Sep 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
Aleksander Madry
55
423
0
16 Jul 2020
Uncovering the Connections Between Adversarial Transferability and Knowledge Transferability
Kaizhao Liang
Jacky Y. Zhang
Wei Ping
Zhuolin Yang
Oluwasanmi Koyejo
Yangqiu Song
AAML
67
26
0
25 Jun 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
85
796
0
26 Feb 2020
Skip Connections Matter: On the Transferability of Adversarial Examples Generated with ResNets
Dongxian Wu
Yisen Wang
Shutao Xia
James Bailey
Xingjun Ma
AAML
SILM
57
312
0
14 Feb 2020
Jacobian Adversarially Regularized Networks for Robustness
Alvin Chan
Yi Tay
Yew-Soon Ong
Jie Fu
AAML
57
74
0
21 Dec 2019
On-manifold Adversarial Data Augmentation Improves Uncertainty Calibration
Kanil Patel
William H. Beluch
Dan Zhang
Michael Pfeiffer
Bin Yang
UQCV
54
30
0
16 Dec 2019
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
195
3,458
0
30 Sep 2019
Robust Learning with Jacobian Regularization
Judy Hoffman
Daniel A. Roberts
Sho Yaida
OOD
AAML
41
166
0
07 Aug 2019
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
592
4,735
0
13 May 2019
Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks
Yinpeng Dong
Tianyu Pang
Hang Su
Jun Zhu
SILM
AAML
75
836
0
05 Apr 2019
Learning Transferable Adversarial Examples via Ghost Networks
Yingwei Li
S. Bai
Yuyin Zhou
Cihang Xie
Zhishuai Zhang
Alan Yuille
AAML
71
136
0
09 Dec 2018
Disentangling Adversarial Robustness and Generalization
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
241
279
0
03 Dec 2018
Characterizing and Avoiding Negative Transfer
Zirui Wang
Zihang Dai
Barnabás Póczós
J. Carbonell
80
413
0
24 Nov 2018
On the Geometry of Adversarial Examples
Marc Khoury
Dylan Hadfield-Menell
AAML
46
79
0
01 Nov 2018
Improving DNN Robustness to Adversarial Attacks using Jacobian Regularization
Daniel Jakubovitz
Raja Giryes
AAML
39
210
0
23 Mar 2018
Improving Transferability of Adversarial Examples with Input Diversity
Cihang Xie
Zhishuai Zhang
Yuyin Zhou
Song Bai
Jianyu Wang
Zhou Ren
Alan Yuille
AAML
83
1,108
0
19 Mar 2018
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
Xingjun Ma
Yue Liu
Yisen Wang
S. Erfani
S. Wijewickrema
Grant Schoenebeck
D. Song
Michael E. Houle
James Bailey
AAML
95
734
0
08 Jan 2018
Gradient Regularization Improves Accuracy of Discriminative Models
D. Varga
Adrián Csiszárik
Zsolt Zombori
35
53
0
28 Dec 2017
Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients
A. Ross
Finale Doshi-Velez
AAML
145
679
0
26 Nov 2017
PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples
Yang Song
Taesup Kim
Sebastian Nowozin
Stefano Ermon
Nate Kushman
AAML
102
787
0
30 Oct 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
258
9,687
0
25 Oct 2017
Improved Regularization of Convolutional Neural Networks with Cutout
Terrance Devries
Graham W. Taylor
99
3,739
0
15 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
241
11,962
0
19 Jun 2017
Spectral Norm Regularization for Improving the Generalizability of Deep Learning
Yuichi Yoshida
Takeru Miyato
73
328
0
31 May 2017
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
D. Song
AAML
133
1,727
0
08 Nov 2016
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
575
27,231
0
02 Dec 2015
How transferable are features in deep neural networks?
J. Yosinski
Jeff Clune
Yoshua Bengio
Hod Lipson
OOD
171
8,309
0
06 Nov 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
204
14,831
1
21 Dec 2013
Estimating the Hessian by Back-propagating Curvature
James Martens
Ilya Sutskever
Kevin Swersky
73
80
0
27 Jun 2012
Previous
1
2