ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.07344
  4. Cited By
Inverse Evolution Layers: Physics-informed Regularizers for Deep Neural
  Networks

Inverse Evolution Layers: Physics-informed Regularizers for Deep Neural Networks

14 July 2023
Chao Liu
Zhonghua Qiao
Chong Li
Carola-Bibiane Schönlieb
ArXivPDFHTML

Papers citing "Inverse Evolution Layers: Physics-informed Regularizers for Deep Neural Networks"

2 / 2 papers shown
Title
Convex Shape Representation with Binary Labels for Image Segmentation:
  Models and Fast Algorithms
Convex Shape Representation with Binary Labels for Image Segmentation: Models and Fast Algorithms
Shousheng Luo
X. Tai
Yang Wang
27
6
0
22 Feb 2020
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
446
15,639
0
02 Nov 2015
1