ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.06915
  4. Cited By
Weighted Averaged Stochastic Gradient Descent: Asymptotic Normality and Optimality

Weighted Averaged Stochastic Gradient Descent: Asymptotic Normality and Optimality

13 July 2023
Ziyang Wei
Wanrong Zhu
Wei Biao Wu
ArXivPDFHTML

Papers citing "Weighted Averaged Stochastic Gradient Descent: Asymptotic Normality and Optimality"

22 / 22 papers shown
Title
Statistical Inference for Online Algorithms
Statistical Inference for Online Algorithms
Selina Carter
Arun K Kuchibhotla
38
0
0
22 May 2025
Sharp Gaussian approximations for Decentralized Federated Learning
Sharp Gaussian approximations for Decentralized Federated Learning
Soham Bonnerjee
Sayar Karmakar
Wei Biao Wu
FedML
49
0
0
12 May 2025
Enhancing Stochastic Optimization for Statistical Efficiency Using
  ROOT-SGD with Diminishing Stepsize
Enhancing Stochastic Optimization for Statistical Efficiency Using ROOT-SGD with Diminishing Stepsize
Tong Zhang
Chris Junchi Li
54
0
0
15 Jul 2024
High Confidence Level Inference is Almost Free using Parallel Stochastic
  Optimization
High Confidence Level Inference is Almost Free using Parallel Stochastic Optimization
Wanrong Zhu
Zhipeng Lou
Ziyang Wei
Wei Biao Wu
67
2
0
17 Jan 2024
Fast and Robust Online Inference with Stochastic Gradient Descent via
  Random Scaling
Fast and Robust Online Inference with Stochastic Gradient Descent via Random Scaling
S. Lee
Yuan Liao
M. Seo
Youngki Shin
38
31
0
06 Jun 2021
Statistical Inference for Online Decision Making via Stochastic Gradient
  Descent
Statistical Inference for Online Decision Making via Stochastic Gradient Descent
Haoyu Chen
Wenbin Lu
R. Song
OffRL
102
27
0
14 Oct 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime:
  Asymptotic Normality and Bias
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
87
51
0
14 Jun 2020
On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
  Non-Asymptotic Concentration
On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic Concentration
Wenlong Mou
C. J. Li
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
54
76
0
09 Apr 2020
Online Covariance Matrix Estimation in Stochastic Gradient Descent
Online Covariance Matrix Estimation in Stochastic Gradient Descent
Wanrong Zhu
Xi Chen
Wei Biao Wu
59
56
0
10 Feb 2020
Momentum-Based Variance Reduction in Non-Convex SGD
Momentum-Based Variance Reduction in Non-Convex SGD
Ashok Cutkosky
Francesco Orabona
ODL
78
406
0
24 May 2019
Normal Approximation for Stochastic Gradient Descent via Non-Asymptotic
  Rates of Martingale CLT
Normal Approximation for Stochastic Gradient Descent via Non-Asymptotic Rates of Martingale CLT
Andreas Anastasiou
Krishnakumar Balasubramanian
Murat A. Erdogdu
55
38
0
03 Apr 2019
Tight Analyses for Non-Smooth Stochastic Gradient Descent
Tight Analyses for Non-Smooth Stochastic Gradient Descent
Nicholas J. A. Harvey
Christopher Liaw
Y. Plan
Sikander Randhawa
40
138
0
13 Dec 2018
Statistical Inference for the Population Landscape via Moment Adjusted
  Stochastic Gradients
Statistical Inference for the Population Landscape via Moment Adjusted Stochastic Gradients
Tengyuan Liang
Weijie Su
52
21
0
20 Dec 2017
Statistical inference using SGD
Statistical inference using SGD
Tianyang Li
Liu Liu
Anastasios Kyrillidis
Constantine Caramanis
FedML
23
37
0
21 May 2017
Statistical Inference for Model Parameters in Stochastic Gradient
  Descent
Statistical Inference for Model Parameters in Stochastic Gradient Descent
Xi Chen
Jason D. Lee
Xin T. Tong
Yichen Zhang
62
138
0
27 Oct 2016
Optimization Methods for Large-Scale Machine Learning
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
233
3,206
0
15 Jun 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.7K
150,006
0
22 Dec 2014
Deep learning with Elastic Averaging SGD
Deep learning with Elastic Averaging SGD
Sixin Zhang
A. Choromańska
Yann LeCun
FedML
96
610
0
20 Dec 2014
Stochastic Gradient Descent, Weighted Sampling, and the Randomized
  Kaczmarz algorithm
Stochastic Gradient Descent, Weighted Sampling, and the Randomized Kaczmarz algorithm
Deanna Needell
Nathan Srebro
Rachel A. Ward
134
553
0
21 Oct 2013
A simpler approach to obtaining an O(1/t) convergence rate for the
  projected stochastic subgradient method
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark Schmidt
Francis R. Bach
176
260
0
10 Dec 2012
Stochastic Gradient Descent for Non-smooth Optimization: Convergence
  Results and Optimal Averaging Schemes
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
146
574
0
08 Dec 2012
Making Gradient Descent Optimal for Strongly Convex Stochastic
  Optimization
Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization
Alexander Rakhlin
Ohad Shamir
Karthik Sridharan
161
768
0
26 Sep 2011
1