Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2307.06915
Cited By
Weighted Averaged Stochastic Gradient Descent: Asymptotic Normality and Optimality
13 July 2023
Ziyang Wei
Wanrong Zhu
Wei Biao Wu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Weighted Averaged Stochastic Gradient Descent: Asymptotic Normality and Optimality"
22 / 22 papers shown
Title
Statistical Inference for Online Algorithms
Selina Carter
Arun K Kuchibhotla
38
0
0
22 May 2025
Sharp Gaussian approximations for Decentralized Federated Learning
Soham Bonnerjee
Sayar Karmakar
Wei Biao Wu
FedML
49
0
0
12 May 2025
Enhancing Stochastic Optimization for Statistical Efficiency Using ROOT-SGD with Diminishing Stepsize
Tong Zhang
Chris Junchi Li
54
0
0
15 Jul 2024
High Confidence Level Inference is Almost Free using Parallel Stochastic Optimization
Wanrong Zhu
Zhipeng Lou
Ziyang Wei
Wei Biao Wu
67
2
0
17 Jan 2024
Fast and Robust Online Inference with Stochastic Gradient Descent via Random Scaling
S. Lee
Yuan Liao
M. Seo
Youngki Shin
38
31
0
06 Jun 2021
Statistical Inference for Online Decision Making via Stochastic Gradient Descent
Haoyu Chen
Wenbin Lu
R. Song
OffRL
102
27
0
14 Oct 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
87
51
0
14 Jun 2020
On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic Concentration
Wenlong Mou
C. J. Li
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
54
76
0
09 Apr 2020
Online Covariance Matrix Estimation in Stochastic Gradient Descent
Wanrong Zhu
Xi Chen
Wei Biao Wu
59
56
0
10 Feb 2020
Momentum-Based Variance Reduction in Non-Convex SGD
Ashok Cutkosky
Francesco Orabona
ODL
78
406
0
24 May 2019
Normal Approximation for Stochastic Gradient Descent via Non-Asymptotic Rates of Martingale CLT
Andreas Anastasiou
Krishnakumar Balasubramanian
Murat A. Erdogdu
55
38
0
03 Apr 2019
Tight Analyses for Non-Smooth Stochastic Gradient Descent
Nicholas J. A. Harvey
Christopher Liaw
Y. Plan
Sikander Randhawa
40
138
0
13 Dec 2018
Statistical Inference for the Population Landscape via Moment Adjusted Stochastic Gradients
Tengyuan Liang
Weijie Su
52
21
0
20 Dec 2017
Statistical inference using SGD
Tianyang Li
Liu Liu
Anastasios Kyrillidis
Constantine Caramanis
FedML
23
37
0
21 May 2017
Statistical Inference for Model Parameters in Stochastic Gradient Descent
Xi Chen
Jason D. Lee
Xin T. Tong
Yichen Zhang
62
138
0
27 Oct 2016
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
233
3,206
0
15 Jun 2016
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.7K
150,006
0
22 Dec 2014
Deep learning with Elastic Averaging SGD
Sixin Zhang
A. Choromańska
Yann LeCun
FedML
96
610
0
20 Dec 2014
Stochastic Gradient Descent, Weighted Sampling, and the Randomized Kaczmarz algorithm
Deanna Needell
Nathan Srebro
Rachel A. Ward
134
553
0
21 Oct 2013
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark Schmidt
Francis R. Bach
176
260
0
10 Dec 2012
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
146
574
0
08 Dec 2012
Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization
Alexander Rakhlin
Ohad Shamir
Karthik Sridharan
161
768
0
26 Sep 2011
1