Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2307.05592
Cited By
Functional PCA and Deep Neural Networks-based Bayesian Inverse Uncertainty Quantification with Transient Experimental Data
10 July 2023
Ziyue Xie
M. Yaseen
Xuechun Wu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Functional PCA and Deep Neural Networks-based Bayesian Inverse Uncertainty Quantification with Transient Experimental Data"
7 / 7 papers shown
Title
Prediction and Uncertainty Quantification of SAFARI-1 Axial Neutron Flux Profiles with Neural Networks
L. Moloko
P. Bokov
Xu Wu
K. Ivanov
18
9
0
16 Nov 2022
Quantification of Deep Neural Network Prediction Uncertainties for VVUQ of Machine Learning Models
M. Yaseen
Xu Wu
AI4CE
53
14
0
27 Jun 2022
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDL
UQCV
62
205
0
22 Jun 2020
Bayesian inference and non-linear extensions of the CIRCE method for quantifying the uncertainty of closure relationships integrated into thermal-hydraulic system codes
Guillaume Damblin
P. Gaillard
45
20
0
13 Feb 2019
Inverse Uncertainty Quantification using the Modular Bayesian Approach based on Gaussian Process, Part 1: Theory
Xu Wu
T. Kozłowski
Hadi Meidani
K. Shirvan
51
100
0
05 Jan 2018
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
282
4,793
0
04 Jan 2016
Generative Models for Functional Data using Phase and Amplitude Separation
J. D. Tucker
Wei Wu
Anuj Srivastava
68
191
0
08 Dec 2012
1