ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.05029
  4. Cited By
FairLay-ML: Intuitive Remedies for Unfairness in Data-Driven
  Social-Critical Algorithms

FairLay-ML: Intuitive Remedies for Unfairness in Data-Driven Social-Critical Algorithms

11 July 2023
Normen Yu
Gang Tan
Saeid Tizpaz-Niari
    FaML
ArXivPDFHTML

Papers citing "FairLay-ML: Intuitive Remedies for Unfairness in Data-Driven Social-Critical Algorithms"

2 / 2 papers shown
Title
FairLay-ML: Intuitive Debugging of Fairness in Data-Driven
  Social-Critical Software
FairLay-ML: Intuitive Debugging of Fairness in Data-Driven Social-Critical Software
Normen Yu
Luciana Carreon
Gang Tan
Saeid Tizpaz-Niari
39
2
0
01 Jul 2024
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
352
4,237
0
23 Aug 2019
1