Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2307.04507
Cited By
Improving Factuality of Abstractive Summarization via Contrastive Reward Learning
10 July 2023
Ethan Chern
Zhiruo Wang
Sanjan Das
Bhavuk Sharma
Pengfei Liu
Graham Neubig
HILM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving Factuality of Abstractive Summarization via Contrastive Reward Learning"
9 / 9 papers shown
Title
MAMM-Refine: A Recipe for Improving Faithfulness in Generation with Multi-Agent Collaboration
David Wan
Justin Chih-Yao Chen
Elias Stengel-Eskin
Joey Tianyi Zhou
LLMAG
LRM
65
1
0
19 Mar 2025
Learning to Substitute Words with Model-based Score Ranking
Hongye Liu
Ricardo Henao
43
0
0
09 Feb 2025
Coarse-to-Fine Highlighting: Reducing Knowledge Hallucination in Large Language Models
Qitan Lv
Jie Wang
Hanzhu Chen
Bin Li
Yongdong Zhang
Feng Wu
HILM
31
3
0
19 Oct 2024
Multi-Dimensional Optimization for Text Summarization via Reinforcement Learning
Sangwon Ryu
Heejin Do
Yunsu Kim
Gary Geunbae Lee
Jungseul Ok
31
3
0
01 Jun 2024
A Survey of Large Language Models in Medicine: Progress, Application, and Challenge
Hongjian Zhou
Fenglin Liu
Boyang Gu
Xinyu Zou
Jinfa Huang
...
Yefeng Zheng
Lei A. Clifton
Zheng Li
Fenglin Liu
David A. Clifton
LM&MA
41
108
0
09 Nov 2023
Chain-of-Verification Reduces Hallucination in Large Language Models
S. Dhuliawala
M. Komeili
Jing Xu
Roberta Raileanu
Xian Li
Asli Celikyilmaz
Jason Weston
LRM
HILM
22
177
0
20 Sep 2023
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
369
12,081
0
04 Mar 2022
Factual Error Correction for Abstractive Summarization Models
Mengyao Cao
Yue Dong
Jiapeng Wu
Jackie C.K. Cheung
HILM
KELM
169
159
0
17 Oct 2020
Teaching Machines to Read and Comprehend
Karl Moritz Hermann
Tomás Kociský
Edward Grefenstette
L. Espeholt
W. Kay
Mustafa Suleyman
Phil Blunsom
211
3,515
0
10 Jun 2015
1