Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2307.04024
Cited By
Robust Ranking Explanations
8 July 2023
Chao Chen
Chenghua Guo
Guixiang Ma
Ming Zeng
Xi Zhang
Sihong Xie
FAtt
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robust Ranking Explanations"
50 / 62 papers shown
Title
Robust Explanation Constraints for Neural Networks
Matthew Wicker
Juyeon Heo
Luca Costabello
Adrian Weller
FAtt
42
18
0
16 Dec 2022
Exploiting the Relationship Between Kendall's Rank Correlation and Cosine Similarity for Attribution Protection
Fan Wang
A. Kong
139
10
0
15 May 2022
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
260
348
0
15 Dec 2021
Self-learn to Explain Siamese Networks Robustly
Chao Chen
Yifan Shen
Guixiang Ma
Xiangnan Kong
S. Rangarajan
Xi Zhang
Sihong Xie
65
5
0
15 Sep 2021
Robust Explainability: A Tutorial on Gradient-Based Attribution Methods for Deep Neural Networks
Ian E. Nielsen
Dimah Dera
Ghulam Rasool
N. Bouaynaya
R. Ramachandran
FAtt
69
80
0
23 Jul 2021
Certifiably Robust Interpretation via Renyi Differential Privacy
Ao Liu
Xiaoyu Chen
Sijia Liu
Lirong Xia
Chuang Gan
AAML
47
13
0
04 Jul 2021
Improving Attribution Methods by Learning Submodular Functions
Piyushi Manupriya
Tarun Ram Menta
S. Jagarlapudi
V. Balasubramanian
TDI
53
6
0
19 Apr 2021
Practical Relative Order Attack in Deep Ranking
Mo Zhou
Le Wang
Zhenxing Niu
Qilin Zhang
Yinghui Xu
N. Zheng
G. Hua
106
18
0
09 Mar 2021
QAIR: Practical Query-efficient Black-Box Attacks for Image Retrieval
Xiaodan Li
Jinfeng Li
YueFeng Chen
Shaokai Ye
Yuan He
Shuhui Wang
Hang Su
Hui Xue
55
44
0
04 Mar 2021
Towards Robust and Reliable Algorithmic Recourse
Sohini Upadhyay
Shalmali Joshi
Himabindu Lakkaraju
52
109
0
26 Feb 2021
Enhanced Regularizers for Attributional Robustness
A. Sarkar
Anirban Sarkar
V. Balasubramanian
41
16
0
28 Dec 2020
Towards Robust Explanations for Deep Neural Networks
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
62
63
0
18 Dec 2020
Augmented Lagrangian Adversarial Attacks
Jérôme Rony
Eric Granger
M. Pedersoli
Ismail Ben Ayed
AAML
42
39
0
24 Nov 2020
Towards Understanding the Regularization of Adversarial Robustness on Neural Networks
Yuxin Wen
Shuai Li
Kui Jia
AAML
47
24
0
15 Nov 2020
FAR: A General Framework for Attributional Robustness
Adam Ivankay
Ivan Girardi
Chiara Marchiori
P. Frossard
OOD
50
22
0
14 Oct 2020
Input Hessian Regularization of Neural Networks
Waleed Mustafa
Robert A. Vandermeulen
Marius Kloft
AAML
46
12
0
14 Sep 2020
A simple defense against adversarial attacks on heatmap explanations
Laura Rieger
Lars Kai Hansen
FAtt
AAML
71
37
0
13 Jul 2020
Boundary thickness and robustness in learning models
Yaoqing Yang
Rekha Khanna
Yaodong Yu
A. Gholami
Kurt Keutzer
Joseph E. Gonzalez
Kannan Ramchandran
Michael W. Mahoney
OOD
41
41
0
09 Jul 2020
Improving Adversarial Robustness via Unlabeled Out-of-Domain Data
Zhun Deng
Linjun Zhang
Amirata Ghorbani
James Zou
67
32
0
15 Jun 2020
Towards Understanding Fast Adversarial Training
Bai Li
Shiqi Wang
Suman Jana
Lawrence Carin
AAML
63
50
0
04 Jun 2020
Transferable, Controllable, and Inconspicuous Adversarial Attacks on Person Re-identification With Deep Mis-Ranking
Hongjun Wang
Guangrun Wang
Ya Li
Dongyu Zhang
Liang Lin
AAML
52
84
0
08 Apr 2020
Toward Adversarial Robustness via Semi-supervised Robust Training
Yiming Li
Baoyuan Wu
Yan Feng
Yanbo Fan
Yong Jiang
Zhifeng Li
Shutao Xia
AAML
101
13
0
16 Mar 2020
Adversarial Ranking Attack and Defense
Mo Zhou
Zhenxing Niu
Le Wang
Qilin Zhang
G. Hua
110
39
0
26 Feb 2020
Understanding and Mitigating the Tradeoff Between Robustness and Accuracy
Aditi Raghunathan
Sang Michael Xie
Fanny Yang
John C. Duchi
Percy Liang
AAML
84
228
0
25 Feb 2020
DANCE: Enhancing saliency maps using decoys
Y. Lu
Wenbo Guo
Masashi Sugiyama
William Stafford Noble
AAML
52
14
0
03 Feb 2020
GraphLIME: Local Interpretable Model Explanations for Graph Neural Networks
Q. Huang
M. Yamada
Yuan Tian
Dinesh Singh
Dawei Yin
Yi-Ju Chang
FAtt
82
354
0
17 Jan 2020
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
138
1,178
0
12 Jan 2020
ERASER: A Benchmark to Evaluate Rationalized NLP Models
Jay DeYoung
Sarthak Jain
Nazneen Rajani
Eric P. Lehman
Caiming Xiong
R. Socher
Byron C. Wallace
112
637
0
08 Nov 2019
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
Han Xu
Yao Ma
Haochen Liu
Debayan Deb
Hui Liu
Jiliang Tang
Anil K. Jain
AAML
65
675
0
17 Sep 2019
Targeted Mismatch Adversarial Attack: Query with a Flower to Retrieve the Tower
Giorgos Tolias
Filip Radenovic
Ondřej Chum
AAML
52
70
0
24 Aug 2019
Explanations can be manipulated and geometry is to blame
Ann-Kathrin Dombrowski
Maximilian Alber
Christopher J. Anders
M. Ackermann
K. Müller
Pan Kessel
AAML
FAtt
81
331
0
19 Jun 2019
Is Attention Interpretable?
Sofia Serrano
Noah A. Smith
108
683
0
09 Jun 2019
On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems
Tianyi Lin
Chi Jin
Michael I. Jordan
120
507
0
02 Jun 2019
Explainability Techniques for Graph Convolutional Networks
Federico Baldassarre
Hossein Azizpour
GNN
FAtt
168
268
0
31 May 2019
Robust Attribution Regularization
Jiefeng Chen
Xi Wu
Vaibhav Rastogi
Yingyu Liang
S. Jha
OOD
47
83
0
23 May 2019
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
R. Mothilal
Amit Sharma
Chenhao Tan
CML
108
1,020
0
19 May 2019
Explaining Deep Neural Networks with a Polynomial Time Algorithm for Shapley Values Approximation
Marco Ancona
Cengiz Öztireli
Markus Gross
FAtt
TDI
81
225
0
26 Mar 2019
Neural Network Attributions: A Causal Perspective
Aditya Chattopadhyay
Piyushi Manupriya
Anirban Sarkar
V. Balasubramanian
CML
50
146
0
06 Feb 2019
Fooling Neural Network Interpretations via Adversarial Model Manipulation
Juyeon Heo
Sunghwan Joo
Taesup Moon
AAML
FAtt
93
203
0
06 Feb 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
134
2,549
0
24 Jan 2019
Robustness via curvature regularization, and vice versa
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
J. Uesato
P. Frossard
AAML
74
319
0
23 Nov 2018
Theoretical Analysis of Adversarial Learning: A Minimax Approach
Zhuozhuo Tu
Jingwei Zhang
Dacheng Tao
AAML
43
68
0
13 Nov 2018
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
134
1,966
0
08 Oct 2018
On the Robustness of Interpretability Methods
David Alvarez-Melis
Tommi Jaakkola
76
526
0
21 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
126
941
0
20 Jun 2018
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
102
1,778
0
30 May 2018
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
115
589
0
21 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
219
3,185
0
01 Feb 2018
Theoretical Impediments to Machine Learning With Seven Sparks from the Causal Revolution
Judea Pearl
CML
61
335
0
11 Jan 2018
Interpretation of Neural Networks is Fragile
Amirata Ghorbani
Abubakar Abid
James Zou
FAtt
AAML
131
866
0
29 Oct 2017
1
2
Next