Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2307.03565
Cited By
v1
v2
v3 (latest)
MALIBO: Meta-learning for Likelihood-free Bayesian Optimization
7 July 2023
Jia Pan
Stefan Falkner
Felix Berkenkamp
Joaquin Vanschoren
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"MALIBO: Meta-learning for Likelihood-free Bayesian Optimization"
24 / 24 papers shown
Title
Optimizing Hyperparameters with Conformal Quantile Regression
David Salinas
Jacek Golebiowski
Aaron Klein
Matthias Seeger
Cédric Archambeau
78
9
0
05 May 2023
Batch Bayesian optimisation via density-ratio estimation with guarantees
Rafael Oliveira
Louis C. Tiao
Fabio Ramos
84
7
0
22 Sep 2022
Pre-training helps Bayesian optimization too
Zehao Wang
George E. Dahl
Kevin Swersky
Chansoo Lee
Zelda E. Mariet
Zachary Nado
Justin Gilmer
Jasper Snoek
Zoubin Ghahramani
60
9
0
07 Jul 2022
A General Recipe for Likelihood-free Bayesian Optimization
Jiaming Song
Lantao Yu
Willie Neiswanger
Stefano Ermon
64
24
0
27 Jun 2022
Towards Learning Universal Hyperparameter Optimizers with Transformers
Yutian Chen
Xingyou Song
Chansoo Lee
Zehao Wang
Qiuyi Zhang
...
Greg Kochanski
Arnaud Doucet
MarcÁurelio Ranzato
Sagi Perel
Nando de Freitas
90
65
0
26 May 2022
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
Katharina Eggensperger
Philip Muller
Neeratyoy Mallik
Matthias Feurer
René Sass
Aaron Klein
Noor H. Awad
Marius Lindauer
Frank Hutter
201
104
0
14 Sep 2021
Why Do Deep Residual Networks Generalize Better than Deep Feedforward Networks? -- A Neural Tangent Kernel Perspective
Kaixuan Huang
Yuqing Wang
Molei Tao
T. Zhao
MLT
51
98
0
14 Feb 2020
NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search
Xuanyi Dong
Yi Yang
141
714
0
02 Jan 2020
Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization
Aaron Klein
Frank Hutter
41
93
0
13 May 2019
Meta-Learning: A Survey
Joaquin Vanschoren
FedML
OOD
70
762
0
08 Oct 2018
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
278
672
0
07 Jun 2018
Maximizing acquisition functions for Bayesian optimization
James T. Wilson
Frank Hutter
M. Deisenroth
129
247
0
25 May 2018
A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets
P. Chrabaszcz
I. Loshchilov
Frank Hutter
SSeg
OOD
170
649
0
27 Jul 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
829
11,943
0
09 Mar 2017
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization
A. Marco
Felix Berkenkamp
Philipp Hennig
Angela P. Schoellig
Andreas Krause
S. Schaal
Sebastian Trimpe
72
128
0
03 Mar 2017
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
124
2,008
0
14 Jun 2016
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
305
5,534
0
23 Nov 2015
Bayesian optimization for materials design
P. Frazier
Jialei Wang
AI4CE
62
228
0
03 Jun 2015
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
192
1,892
0
20 May 2015
OpenML: networked science in machine learning
Joaquin Vanschoren
Jan N. van Rijn
B. Bischl
Luís Torgo
FedML
AI4CE
167
1,327
0
29 Jul 2014
Predictive Entropy Search for Efficient Global Optimization of Black-box Functions
José Miguel Hernández-Lobato
Matthew W. Hoffman
Zoubin Ghahramani
107
647
0
10 Jun 2014
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
373
7,957
0
13 Jun 2012
Entropy Search for Information-Efficient Global Optimization
Philipp Hennig
Christian J. Schuler
123
673
0
06 Dec 2011
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
174
4,313
0
18 Nov 2011
1