Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2307.02129
Cited By
How Deep Neural Networks Learn Compositional Data: The Random Hierarchy Model
5 July 2023
Francesco Cagnetta
Leonardo Petrini
Umberto M. Tomasini
Alessandro Favero
Matthieu Wyart
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How Deep Neural Networks Learn Compositional Data: The Random Hierarchy Model"
24 / 24 papers shown
Title
Learning curves theory for hierarchically compositional data with power-law distributed features
Francesco Cagnetta
Hyunmo Kang
Matthieu Wyart
100
1
0
11 May 2025
A distributional simplicity bias in the learning dynamics of transformers
Riccardo Rende
Federica Gerace
Alessandro Laio
Sebastian Goldt
107
8
0
17 Feb 2025
Probing the Latent Hierarchical Structure of Data via Diffusion Models
Antonio Sclocchi
Alessandro Favero
Noam Itzhak Levi
Matthieu Wyart
DiffM
84
5
0
17 Oct 2024
Analyzing (In)Abilities of SAEs via Formal Languages
Abhinav Menon
Manish Shrivastava
David M. Krueger
Ekdeep Singh Lubana
83
8
0
15 Oct 2024
Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit
Boaz Barak
Benjamin L. Edelman
Surbhi Goel
Sham Kakade
Eran Malach
Cyril Zhang
95
132
0
18 Jul 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
87
128
0
03 May 2022
Locality defeats the curse of dimensionality in convolutional teacher-student scenarios
Alessandro Favero
Francesco Cagnetta
Matthieu Wyart
58
31
0
16 Jun 2021
Relative stability toward diffeomorphisms indicates performance in deep nets
Leonardo Petrini
Alessandro Favero
Mario Geiger
Matthieu Wyart
OOD
53
15
0
06 May 2021
Sifting out the features by pruning: Are convolutional networks the winning lottery ticket of fully connected ones?
Franco Pellegrini
Giulio Biroli
86
6
0
27 Apr 2021
The Intrinsic Dimension of Images and Its Impact on Learning
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
231
271
0
18 Apr 2021
Feature Learning in Infinite-Width Neural Networks
Greg Yang
J. E. Hu
MLT
80
154
0
30 Nov 2020
Geometric compression of invariant manifolds in neural nets
J. Paccolat
Leonardo Petrini
Mario Geiger
Kevin Tyloo
Matthieu Wyart
MLT
96
36
0
22 Jul 2020
Hierarchical nucleation in deep neural networks
Diego Doimo
Aldo Glielmo
A. Ansuini
Alessandro Laio
BDL
AI4CE
43
31
0
07 Jul 2020
Dimensionality compression and expansion in Deep Neural Networks
Stefano Recanatesi
M. Farrell
Madhu S. Advani
Timothy Moore
Guillaume Lajoie
E. Shea-Brown
54
73
0
02 Jun 2019
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
146
287
0
13 Feb 2019
A mathematical theory of semantic development in deep neural networks
Andrew M. Saxe
James L. McClelland
Surya Ganguli
73
271
0
23 Oct 2018
Nonparametric regression using deep neural networks with ReLU activation function
Johannes Schmidt-Hieber
225
810
0
22 Aug 2017
Failures of Gradient-Based Deep Learning
Shai Shalev-Shwartz
Ohad Shamir
Shaked Shammah
ODL
UQCV
88
201
0
23 Mar 2017
Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review
T. Poggio
H. Mhaskar
Lorenzo Rosasco
Brando Miranda
Q. Liao
97
576
0
02 Nov 2016
Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation
Emily L. Denton
Wojciech Zaremba
Joan Bruna
Yann LeCun
Rob Fergus
FAtt
177
1,689
0
02 Apr 2014
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
Andrew M. Saxe
James L. McClelland
Surya Ganguli
ODL
165
1,845
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
595
15,882
0
12 Nov 2013
Invariant Scattering Convolution Networks
Joan Bruna
S. Mallat
119
1,277
0
05 Mar 2012
k-NN Regression Adapts to Local Intrinsic Dimension
Samory Kpotufe
370
128
0
19 Oct 2011
1