Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2307.01390
Cited By
Adversarial Learning in Real-World Fraud Detection: Challenges and Perspectives
3 July 2023
Daniele Lunghi
A. Simitsis
O. Caelen
Gianluca Bontempi
AAML
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Learning in Real-World Fraud Detection: Challenges and Perspectives"
7 / 7 papers shown
Title
Adaptive Stress Testing for Adversarial Learning in a Financial Environment
K. El-Awady
AAML
19
2
0
08 Jul 2021
Adversarial Attacks for Tabular Data: Application to Fraud Detection and Imbalanced Data
F. Cartella
Orlando Anunciação
Yuki Funabiki
D. Yamaguchi
Toru Akishita
Olivier Elshocht
AAML
92
72
0
20 Jan 2021
Adversarial Concept Drift Detection under Poisoning Attacks for Robust Data Stream Mining
Lukasz Korycki
Bartosz Krawczyk
AAML
105
23
0
20 Sep 2020
Adversarial Robustness Toolbox v1.0.0
Maria-Irina Nicolae
M. Sinn
Minh-Ngoc Tran
Beat Buesser
Ambrish Rawat
...
Nathalie Baracaldo
Bryant Chen
Heiko Ludwig
Ian Molloy
Ben Edwards
AAML
VLM
69
457
0
03 Jul 2018
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples
Pin-Yu Chen
Yash Sharma
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
AAML
59
639
0
13 Sep 2017
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
183
8,513
0
16 Aug 2016
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
204
14,831
1
21 Dec 2013
1