ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.01178
  4. Cited By
Learning Mixtures of Gaussians Using the DDPM Objective

Learning Mixtures of Gaussians Using the DDPM Objective

3 July 2023
Kulin Shah
Sitan Chen
Adam R. Klivans
    DiffM
ArXivPDFHTML

Papers citing "Learning Mixtures of Gaussians Using the DDPM Objective"

15 / 15 papers shown
Title
On the Generalization Properties of Diffusion Models
On the Generalization Properties of Diffusion Models
Puheng Li
Zhong Li
Huishuai Zhang
Jiang Bian
139
34
0
13 Mar 2025
On the Asymptotic Mean Square Error Optimality of Diffusion Models
On the Asymptotic Mean Square Error Optimality of Diffusion Models
B. Fesl
Benedikt Bock
Florian Strasser
Michael Baur
M. Joham
Wolfgang Utschick
DiffM
93
1
0
05 Mar 2024
Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
  Models
Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative Models
Gen Li
Yuting Wei
Yuxin Chen
Yuejie Chi
DiffM
64
61
0
15 Jun 2023
Convergence of denoising diffusion models under the manifold hypothesis
Convergence of denoising diffusion models under the manifold hypothesis
Valentin De Bortoli
DiffM
55
167
0
10 Aug 2022
Hierarchical Text-Conditional Image Generation with CLIP Latents
Hierarchical Text-Conditional Image Generation with CLIP Latents
Aditya A. Ramesh
Prafulla Dhariwal
Alex Nichol
Casey Chu
Mark Chen
VLM
DiffM
339
6,830
0
13 Apr 2022
Diffusion Schrödinger Bridge with Applications to Score-Based
  Generative Modeling
Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling
Valentin De Bortoli
James Thornton
J. Heng
Arnaud Doucet
DiffM
OT
84
461
0
01 Jun 2021
Improved Convergence Guarantees for Learning Gaussian Mixture Models by
  EM and Gradient EM
Improved Convergence Guarantees for Learning Gaussian Mixture Models by EM and Gradient EM
Nimrod Segol
B. Nadler
70
11
0
03 Jan 2021
Robustly Learning Mixtures of $k$ Arbitrary Gaussians
Robustly Learning Mixtures of kkk Arbitrary Gaussians
Ainesh Bakshi
Ilias Diakonikolas
Hengrui Jia
D. Kane
Pravesh Kothari
Santosh Vempala
49
64
0
03 Dec 2020
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
292
6,409
0
26 Nov 2020
Robust Learning of Mixtures of Gaussians
Robust Learning of Mixtures of Gaussians
D. Kane
30
22
0
12 Jul 2020
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
213
3,870
0
12 Jul 2019
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
227
4,778
0
04 Jan 2016
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
252
6,887
0
12 Mar 2015
Polynomial Learning of Distribution Families
Polynomial Learning of Distribution Families
M. Belkin
Kaushik Sinha
326
224
0
27 Apr 2010
Settling the Polynomial Learnability of Mixtures of Gaussians
Settling the Polynomial Learnability of Mixtures of Gaussians
Ankur Moitra
Gregory Valiant
176
341
0
23 Apr 2010
1