ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.00589
15
100

MedCPT: Contrastive Pre-trained Transformers with Large-scale PubMed Search Logs for Zero-shot Biomedical Information Retrieval

2 July 2023
Qiao Jin
Won Kim
Qingyu Chen
Donald C. Comeau
Lana Yeganova
John Wilbur
Zhiyong Lu
    LM&MA
    MedIm
ArXivPDFHTML
Abstract

Information retrieval (IR) is essential in biomedical knowledge acquisition and clinical decision support. While recent progress has shown that language model encoders perform better semantic retrieval, training such models requires abundant query-article annotations that are difficult to obtain in biomedicine. As a result, most biomedical IR systems only conduct lexical matching. In response, we introduce MedCPT, a first-of-its-kind Contrastively Pre-trained Transformer model for zero-shot semantic IR in biomedicine. To train MedCPT, we collected an unprecedented scale of 255 million user click logs from PubMed. With such data, we use contrastive learning to train a pair of closely-integrated retriever and re-ranker. Experimental results show that MedCPT sets new state-of-the-art performance on six biomedical IR tasks, outperforming various baselines including much larger models such as GPT-3-sized cpt-text-XL. In addition, MedCPT also generates better biomedical article and sentence representations for semantic evaluations. As such, MedCPT can be readily applied to various real-world biomedical IR tasks.

View on arXiv
Comments on this paper