ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.00286
  4. Cited By
CMA-ES for Post Hoc Ensembling in AutoML: A Great Success and
  Salvageable Failure

CMA-ES for Post Hoc Ensembling in AutoML: A Great Success and Salvageable Failure

1 July 2023
Lennart Purucker
Joeran Beel
ArXivPDFHTML

Papers citing "CMA-ES for Post Hoc Ensembling in AutoML: A Great Success and Salvageable Failure"

8 / 8 papers shown
Title
Ensembling Finetuned Language Models for Text Classification
Ensembling Finetuned Language Models for Text Classification
Sebastian Pineda Arango
Maciej Janowski
Lennart Purucker
Arber Zela
Frank Hutter
Josif Grabocka
33
0
0
25 Oct 2024
Dynamic Post-Hoc Neural Ensemblers
Dynamic Post-Hoc Neural Ensemblers
Sebastian Pineda Arango
Maciej Janowski
Lennart Purucker
Arber Zela
Frank Hutter
Josif Grabocka
UQCV
44
0
0
06 Oct 2024
Hardware Aware Ensemble Selection for Balancing Predictive Accuracy and
  Cost
Hardware Aware Ensemble Selection for Balancing Predictive Accuracy and Cost
Jannis Maier
Felix Möller
Lennart Purucker
44
0
0
05 Aug 2024
Reshuffling Resampling Splits Can Improve Generalization of
  Hyperparameter Optimization
Reshuffling Resampling Splits Can Improve Generalization of Hyperparameter Optimization
Thomas Nagler
Lennart Schneider
B. Bischl
Matthias Feurer
45
2
0
24 May 2024
cmaes : A Simple yet Practical Python Library for CMA-ES
cmaes : A Simple yet Practical Python Library for CMA-ES
Masahiro Nomura
Masashi Shibata
45
20
0
02 Feb 2024
TabRepo: A Large Scale Repository of Tabular Model Evaluations and its
  AutoML Applications
TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications
David Salinas
Nick Erickson
29
10
0
06 Nov 2023
Time Efficiency in Optimization with a Bayesian-Evolutionary Algorithm
Time Efficiency in Optimization with a Bayesian-Evolutionary Algorithm
Gongjin Lan
Jakub M. Tomczak
D. Roijers
A. E. Eiben
84
80
0
04 May 2020
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
Nick Erickson
Jonas W. Mueller
Alexander Shirkov
Hang Zhang
Pedro Larroy
Mu Li
Alex Smola
LMTD
97
610
0
13 Mar 2020
1