Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2306.16827
Cited By
SaGess: Sampling Graph Denoising Diffusion Model for Scalable Graph Generation
29 June 2023
Stratis Limnios
Praveen Selvaraj
Mihai Cucuringu
Carsten Maple
Gesine Reinert
Andrew Elliott
DiffM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SaGess: Sampling Graph Denoising Diffusion Model for Scalable Graph Generation"
8 / 8 papers shown
Title
Diffusion on Graph: Augmentation of Graph Structure for Node Classification
Yancheng Wang
Changyu Liu
Yingzhen Yang
DiffM
GNN
102
0
0
16 Mar 2025
Do Graph Diffusion Models Accurately Capture and Generate Substructure Distributions?
Xiang Wang
Yang Liu
Lexi Pang
Siwei Chen
Muhan Zhang
DiffM
237
0
0
04 Feb 2025
Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models
Xu Shen
Yili Wang
Kaixiong Zhou
Shirui Pan
Xin Wang
54
8
0
24 Apr 2024
Diffusion-based Graph Generative Methods
Hongyang Chen
Can Xu
Lingyu Zheng
Qiang Zhang
Xuemin Lin
DiffM
MedIm
61
0
0
28 Jan 2024
Leveraging Graph Diffusion Models for Network Refinement Tasks
Puja Trivedi
Ryan Rossi
David Arbour
Tong Yu
Franck Dernoncourt
Sungchul Kim
Nedim Lipka
Namyong Park
Nesreen K. Ahmed
Danai Koutra
DiffM
53
0
0
29 Nov 2023
Sparse Training of Discrete Diffusion Models for Graph Generation
Yiming Qin
Clément Vignac
Pascal Frossard
36
13
0
03 Nov 2023
Diffusion Models for Graphs Benefit From Discrete State Spaces
K. Haefeli
Karolis Martinkus
Nathanael Perraudin
Roger Wattenhofer
DiffM
106
54
0
04 Oct 2022
Deep Graph Generators: A Survey
Faezeh Faez
Yassaman Ommi
M. Baghshah
Hamid R. Rabiee
GNN
AI4CE
53
57
0
31 Dec 2020
1