ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.16484
  4. Cited By
Towards a Better Theoretical Understanding of Independent Subnetwork
  Training

Towards a Better Theoretical Understanding of Independent Subnetwork Training

28 June 2023
Egor Shulgin
Peter Richtárik
    AI4CE
ArXivPDFHTML

Papers citing "Towards a Better Theoretical Understanding of Independent Subnetwork Training"

18 / 18 papers shown
Title
FIARSE: Model-Heterogeneous Federated Learning via Importance-Aware
  Submodel Extraction
FIARSE: Model-Heterogeneous Federated Learning via Importance-Aware Submodel Extraction
Feijie Wu
Xingchen Wang
Yaqing Wang
Tianci Liu
Lu Su
Jing Gao
FedML
51
3
0
28 Jul 2024
MSfusion: A Dynamic Model Splitting Approach for Resource-Constrained
  Machines to Collaboratively Train Larger Models
MSfusion: A Dynamic Model Splitting Approach for Resource-Constrained Machines to Collaboratively Train Larger Models
Jin Xie
Songze Li
FedML
44
0
0
04 Jul 2024
Sparser, Better, Deeper, Stronger: Improving Sparse Training with Exact
  Orthogonal Initialization
Sparser, Better, Deeper, Stronger: Improving Sparse Training with Exact Orthogonal Initialization
A. Nowak
Lukasz Gniecki
Filip Szatkowski
Jacek Tabor
37
0
0
03 Jun 2024
FedP3: Federated Personalized and Privacy-friendly Network Pruning under
  Model Heterogeneity
FedP3: Federated Personalized and Privacy-friendly Network Pruning under Model Heterogeneity
Kai Yi
Nidham Gazagnadou
Peter Richtárik
Lingjuan Lyu
79
11
0
15 Apr 2024
Efficient and Light-Weight Federated Learning via Asynchronous
  Distributed Dropout
Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout
Chen Dun
Mirian Hipolito Garcia
C. Jermaine
Dimitrios Dimitriadis
Anastasios Kyrillidis
66
20
0
28 Oct 2022
EF21-P and Friends: Improved Theoretical Communication Complexity for
  Distributed Optimization with Bidirectional Compression
EF21-P and Friends: Improved Theoretical Communication Complexity for Distributed Optimization with Bidirectional Compression
Kaja Gruntkowska
A. Tyurin
Peter Richtárik
38
22
0
30 Sep 2022
Minibatch Stochastic Three Points Method for Unconstrained Smooth
  Minimization
Minibatch Stochastic Three Points Method for Unconstrained Smooth Minimization
Soumia Boucherouite
Grigory Malinovsky
Peter Richtárik
El Houcine Bergou
21
3
0
16 Sep 2022
Federated Pruning: Improving Neural Network Efficiency with Federated
  Learning
Federated Pruning: Improving Neural Network Efficiency with Federated Learning
Rongmei Lin
Yonghui Xiao
Tien-Ju Yang
Ding Zhao
Li Xiong
Giovanni Motta
Franccoise Beaufays
FedML
39
12
0
14 Sep 2022
FL_PyTorch: optimization research simulator for federated learning
FL_PyTorch: optimization research simulator for federated learning
Konstantin Burlachenko
Samuel Horváth
Peter Richtárik
FedML
48
18
0
07 Feb 2022
Optimal Algorithms for Decentralized Stochastic Variational Inequalities
Optimal Algorithms for Decentralized Stochastic Variational Inequalities
D. Kovalev
Aleksandr Beznosikov
Abdurakhmon Sadiev
Michael Persiianov
Peter Richtárik
Alexander Gasnikov
37
35
0
06 Feb 2022
Permutation Compressors for Provably Faster Distributed Nonconvex
  Optimization
Permutation Compressors for Provably Faster Distributed Nonconvex Optimization
Rafal Szlendak
A. Tyurin
Peter Richtárik
133
35
0
07 Oct 2021
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern
  Error Feedback
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback
Ilyas Fatkhullin
Igor Sokolov
Eduard A. Gorbunov
Zhize Li
Peter Richtárik
46
46
0
07 Oct 2021
Federated Dropout -- A Simple Approach for Enabling Federated Learning
  on Resource Constrained Devices
Federated Dropout -- A Simple Approach for Enabling Federated Learning on Resource Constrained Devices
Dingzhu Wen
Ki-Jun Jeon
Kaibin Huang
FedML
70
90
0
30 Sep 2021
A Field Guide to Federated Optimization
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
187
412
0
14 Jul 2021
FjORD: Fair and Accurate Federated Learning under heterogeneous targets
  with Ordered Dropout
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
189
268
0
26 Feb 2021
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Samuel Horváth
Lihua Lei
Peter Richtárik
Michael I. Jordan
57
30
0
13 Feb 2020
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
245
1,833
0
17 Sep 2019
New Convergence Aspects of Stochastic Gradient Algorithms
New Convergence Aspects of Stochastic Gradient Algorithms
Lam M. Nguyen
Phuong Ha Nguyen
Peter Richtárik
K. Scheinberg
Martin Takáč
Marten van Dijk
23
66
0
10 Nov 2018
1