ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.16316
46
2

Learning Continuous Control with Geometric Regularity from Robot Intrinsic Symmetry

28 June 2023
Shengchao Yan
Baohe Zhang
Yuan Zhang
Joschka Boedecker
Wolfram Burgard
ArXivPDFHTML
Abstract

Geometric regularity, which leverages data symmetry, has been successfully incorporated into deep learning architectures such as CNNs, RNNs, GNNs, and Transformers. While this concept has been widely applied in robotics to address the curse of dimensionality when learning from high-dimensional data, the inherent reflectional and rotational symmetry of robot structures has not been adequately explored. Drawing inspiration from cooperative multi-agent reinforcement learning, we introduce novel network structures for single-agent control learning that explicitly capture these symmetries. Moreover, we investigate the relationship between the geometric prior and the concept of Parameter Sharing in multi-agent reinforcement learning. Last but not the least, we implement the proposed framework in online and offline learning methods to demonstrate its ease of use. Through experiments conducted on various challenging continuous control tasks on simulators and real robots, we highlight the significant potential of the proposed geometric regularity in enhancing robot learning capabilities.

View on arXiv
Comments on this paper