Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2306.15427
Cited By
Adversarial Training for Graph Neural Networks: Pitfalls, Solutions, and New Directions
27 June 2023
Lukas Gosch
Simon Geisler
Daniel Sturm
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
AAML
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Training for Graph Neural Networks: Pitfalls, Solutions, and New Directions"
22 / 22 papers shown
Title
SpecSphere: Dual-Pass Spectral-Spatial Graph Neural Networks with Certified Robustness
Yoonhyuk Choi
Chong-Kwon Kim
39
0
0
13 May 2025
Diffusion-based Adversarial Purification from the Perspective of the Frequency Domain
Gaozheng Pei
Ke Ma
Yingfei Sun
Qianqian Xu
Qingming Huang
DiffM
45
0
0
02 May 2025
Robust Conformal Prediction with a Single Binary Certificate
Soroush H. Zargarbashi
Aleksandar Bojchevski
39
0
0
07 Mar 2025
REINFORCE Adversarial Attacks on Large Language Models: An Adaptive, Distributional, and Semantic Objective
Simon Geisler
Tom Wollschlager
M. H. I. Abdalla
Vincent Cohen-Addad
Johannes Gasteiger
Stephan Günnemann
AAML
88
2
0
24 Feb 2025
Personalized Layer Selection for Graph Neural Networks
Kartik Sharma
Vineeth Rakesh Mohan
Yingtong Dou
Srijan Kumar
Mahashweta Das
45
0
0
28 Jan 2025
LLMPirate: LLMs for Black-box Hardware IP Piracy
Vasudev Gohil
Matthew DeLorenzo
Veera Vishwa Achuta Sai Venkat Nallam
Joey See
Jeyavijayan Rajendran
72
3
0
25 Nov 2024
Adversarial Training: A Survey
Mengnan Zhao
Lihe Zhang
Jingwen Ye
Huchuan Lu
Baocai Yin
Xinchao Wang
AAML
38
1
0
19 Oct 2024
Can Large Language Models Improve the Adversarial Robustness of Graph Neural Networks?
Zhongjian Zhang
Xiao Wang
Huichi Zhou
Yue Yu
Mengmei Zhang
Cheng Yang
Chuan Shi
AAML
48
7
0
16 Aug 2024
Relaxing Graph Transformers for Adversarial Attacks
Philipp Foth
Lukas Gosch
Simon Geisler
Leo Schwinn
Stephan Günnemann
AAML
52
1
0
16 Jul 2024
Explainable Graph Neural Networks Under Fire
Zhong Li
Simon Geisler
Yuhang Wang
Stephan Günnemann
M. Leeuwen
AAML
43
0
0
10 Jun 2024
Graph Adversarial Diffusion Convolution
Songtao Liu
Jinghui Chen
Tianfan Fu
Lu Lin
Marinka Zitnik
Dinghao Wu
DiffM
45
1
0
04 Jun 2024
Collective Certified Robustness against Graph Injection Attacks
Y. Lai
Bailin Pan
Kaihuang Chen
Yancheng Yuan
Kai Zhou
AAML
45
2
0
03 Mar 2024
AttackGNN: Red-Teaming GNNs in Hardware Security Using Reinforcement Learning
Vasudev Gohil
Satwik Patnaik
D. Kalathil
Jeyavijayan Rajendran
AAML
40
3
0
21 Feb 2024
Attacking Large Language Models with Projected Gradient Descent
Simon Geisler
Tom Wollschlager
M. H. I. Abdalla
Johannes Gasteiger
Stephan Günnemann
AAML
SILM
49
50
0
14 Feb 2024
Poisoning
×
\times
×
Evasion: Symbiotic Adversarial Robustness for Graph Neural Networks
Ege Erdogan
Simon Geisler
Stephan Günnemann
AAML
32
0
0
09 Dec 2023
Node-aware Bi-smoothing: Certified Robustness against Graph Injection Attacks
Y. Lai
Yulin Zhu
Bailin Pan
Kai Zhou
AAML
46
6
0
07 Dec 2023
On the Adversarial Robustness of Graph Contrastive Learning Methods
Filippo Guerranti
Zinuo Yi
Anna Starovoit
Rafiq Kamel
Simon Geisler
Stephan Günnemann
AAML
41
2
0
29 Nov 2023
Hierarchical Randomized Smoothing
Yan Scholten
Jan Schuchardt
Aleksandar Bojchevski
Stephan Günnemann
AAML
41
5
0
24 Oct 2023
Expressivity of Graph Neural Networks Through the Lens of Adversarial Robustness
Francesco Campi
Lukas Gosch
Thomas Wollschläger
Yan Scholten
Stephan Günnemann
AAML
62
2
0
16 Aug 2023
Revisiting Robustness in Graph Machine Learning
Lukas Gosch
Daniel Sturm
Simon Geisler
Stephan Günnemann
AAML
OOD
72
22
0
01 May 2023
Learning Robust Representation through Graph Adversarial Contrastive Learning
Jiayan Guo
Shangyang Li
Yue Zhao
Fei Huang
33
5
0
31 Jan 2022
Contextual Stochastic Block Models
Y. Deshpande
Andrea Montanari
Elchanan Mossel
S. Sen
103
153
0
23 Jul 2018
1