ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.14916
  4. Cited By
Uncertainty Estimation for Molecules: Desiderata and Methods

Uncertainty Estimation for Molecules: Desiderata and Methods

20 June 2023
Tom Wollschlager
Nicholas Gao
Bertrand Charpentier
Mohamed Amine Ketata
Stephan Günnemann
ArXivPDFHTML

Papers citing "Uncertainty Estimation for Molecules: Desiderata and Methods"

12 / 12 papers shown
Title
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
134
0
0
04 May 2025
AUGUR, A flexible and efficient optimization algorithm for
  identification of optimal adsorption sites
AUGUR, A flexible and efficient optimization algorithm for identification of optimal adsorption sites
I. Kouroudis
Poonam
Neel Misciaci
Felix Mayr
Leon Müller
Zhaosu Gu
A. Gagliardi
29
0
0
24 Sep 2024
Uncertainty Quantification on Graph Learning: A Survey
Uncertainty Quantification on Graph Learning: A Survey
Chao Chen
Chenghua Guo
Rui Xu
Xiangwen Liao
Xi Zhang
Sihong Xie
Hui Xiong
Mohit Bansal
AI4CE
37
1
0
23 Apr 2024
Uncertainty in Graph Neural Networks: A Survey
Uncertainty in Graph Neural Networks: A Survey
Fangxin Wang
Yuqing Liu
Kay Liu
Yibo Wang
Sourav Medya
Philip S. Yu
AI4CE
48
8
0
11 Mar 2024
On Representing Electronic Wave Functions with Sign Equivariant Neural
  Networks
On Representing Electronic Wave Functions with Sign Equivariant Neural Networks
Nicholas Gao
Stephan Günnemann
36
2
0
08 Mar 2024
LTAU-FF: Loss Trajectory Analysis for Uncertainty in Atomistic Force
  Fields
LTAU-FF: Loss Trajectory Analysis for Uncertainty in Atomistic Force Fields
Joshua A. Vita
Amit Samanta
Fei Zhou
Vincenzo Lordi
25
2
0
01 Feb 2024
MUBen: Benchmarking the Uncertainty of Molecular Representation Models
MUBen: Benchmarking the Uncertainty of Molecular Representation Models
Yinghao Li
Lingkai Kong
Yuanqi Du
Yue Yu
Yuchen Zhuang
Wenhao Mu
Chao Zhang
32
9
0
14 Jun 2023
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
  Nonlocal Effects
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
177
247
0
01 May 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
233
1,240
0
08 Jan 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
Dynamic Bayesian Combination of Multiple Imperfect Classifiers
Dynamic Bayesian Combination of Multiple Imperfect Classifiers
Edwin Simpson
Stephen J. Roberts
Ioannis Psorakis
Arfon M. Smith
58
144
0
08 Jun 2012
1