ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.12962
  4. Cited By
PyKoopman: A Python Package for Data-Driven Approximation of the Koopman
  Operator

PyKoopman: A Python Package for Data-Driven Approximation of the Koopman Operator

22 June 2023
Shaowu Pan
E. Kaiser
Brian M. de Silva
J. Nathan Kutz
Steven L. Brunton
ArXiv (abs)PDFHTMLGithub (357★)

Papers citing "PyKoopman: A Python Package for Data-Driven Approximation of the Koopman Operator"

20 / 20 papers shown
Title
CGKN: A Deep Learning Framework for Modeling Complex Dynamical Systems and Efficient Data Assimilation
CGKN: A Deep Learning Framework for Modeling Complex Dynamical Systems and Efficient Data Assimilation
Chuanqi Chen
Nan Chen
Yinling Zhang
Jin-Long Wu
AI4CE
83
2
0
26 Oct 2024
Balanced Neural ODEs: nonlinear model order reduction and Koopman operator approximations
Balanced Neural ODEs: nonlinear model order reduction and Koopman operator approximations
Julius Aka
Johannes Brunnemann
Jörg Eiden
Arne Speerforck
Lars Mikelsons
98
0
0
14 Oct 2024
Koopman Operators in Robot Learning
Koopman Operators in Robot Learning
Lu Shi
Masih Haseli
Giorgos Mamakoukas
Daniel Bruder
Ian Abraham
Todd Murphey
Jorge Cortes
Konstantinos Karydis
AI4CE
111
8
0
08 Aug 2024
The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving
  Dynamical Systems
The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems
Matthew J. Colbrook
81
34
0
06 Sep 2022
Residual Dynamic Mode Decomposition: Robust and verified Koopmanism
Residual Dynamic Mode Decomposition: Robust and verified Koopmanism
Matthew J. Colbrook
Lorna J. Ayton
Máté Szőke
65
62
0
19 May 2022
PySINDy: A comprehensive Python package for robust sparse system
  identification
PySINDy: A comprehensive Python package for robust sparse system identification
A. Kaptanoglu
Brian M. de Silva
Urban Fasel
Kadierdan Kaheman
Andy J. Goldschmidt
...
Zachary G. Nicolaou
Kathleen P. Champion
Jean-Christophe Loiseau
J. Nathan Kutz
Steven L. Brunton
AI4CE
100
150
0
12 Nov 2021
Deeptime: a Python library for machine learning dynamical models from
  time series data
Deeptime: a Python library for machine learning dynamical models from time series data
Moritz Hoffmann
Martin K. Scherer
Tim Hempel
Andreas Mardt
Brian M. de Silva
...
Stefan Klus
Hao Wu
N. Kutz
Steven L. Brunton
Frank Noé
AI4CE
88
106
0
28 Oct 2021
Modern Koopman Theory for Dynamical Systems
Modern Koopman Theory for Dynamical Systems
Steven L. Brunton
M. Budišić
E. Kaiser
J. Nathan Kutz
AI4CE
122
420
0
24 Feb 2021
Advantages of Bilinear Koopman Realizations for the Modeling and Control
  of Systems with Unknown Dynamics
Advantages of Bilinear Koopman Realizations for the Modeling and Control of Systems with Unknown Dynamics
Daniel Bruder
Xun Fu
Ram Vasudevan
51
81
0
20 Oct 2020
From Fourier to Koopman: Spectral Methods for Long-term Time Series
  Prediction
From Fourier to Koopman: Spectral Methods for Long-term Time Series Prediction
Henning Lange
Steven L. Brunton
N. Kutz
AI4TS
77
80
0
01 Apr 2020
Lift & Learn: Physics-informed machine learning for large-scale
  nonlinear dynamical systems
Lift & Learn: Physics-informed machine learning for large-scale nonlinear dynamical systems
E. Qian
Boris Kramer
Benjamin Peherstorfer
Karen E. Willcox
AI4CE
111
267
0
17 Dec 2019
DeepXDE: A deep learning library for solving differential equations
DeepXDE: A deep learning library for solving differential equations
Lu Lu
Xuhui Meng
Zhiping Mao
George Karniadakis
PINNAI4CE
101
1,549
0
10 Jul 2019
Physics-Informed Generative Adversarial Networks for Stochastic
  Differential Equations
Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations
Siyu Dai
Shawn Schaffert
Andreas G. Hofmann
134
367
0
05 Nov 2018
Deep learning for universal linear embeddings of nonlinear dynamics
Deep learning for universal linear embeddings of nonlinear dynamics
Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
83
1,261
0
27 Dec 2017
Linearly-Recurrent Autoencoder Networks for Learning Dynamics
Linearly-Recurrent Autoencoder Networks for Learning Dynamics
Samuel E. Otto
C. Rowley
AI4CE
74
328
0
04 Dec 2017
Time-lagged autoencoders: Deep learning of slow collective variables for
  molecular kinetics
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CEBDL
167
361
0
30 Oct 2017
PDE-Net: Learning PDEs from Data
PDE-Net: Learning PDEs from Data
Zichao Long
Yiping Lu
Xianzhong Ma
Bin Dong
DiffMAI4CE
75
761
0
26 Oct 2017
VAMPnets: Deep learning of molecular kinetics
VAMPnets: Deep learning of molecular kinetics
Andreas Mardt
Luca Pasquali
Hao Wu
Frank Noé
70
546
0
16 Oct 2017
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
Naoya Takeishi
Yoshinobu Kawahara
Takehisa Yairi
51
374
0
12 Oct 2017
Parametric Gaussian Process Regression for Big Data
Parametric Gaussian Process Regression for Big Data
M. Raissi
86
39
0
11 Apr 2017
1