ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.10121
  4. Cited By
A Comprehensive Modeling Approach for Crop Yield Forecasts using
  AI-based Methods and Crop Simulation Models

A Comprehensive Modeling Approach for Crop Yield Forecasts using AI-based Methods and Crop Simulation Models

16 June 2023
R. L. F. Cunha
B. Silva
Priscilla Avegliano
ArXiv (abs)PDFHTML

Papers citing "A Comprehensive Modeling Approach for Crop Yield Forecasts using AI-based Methods and Crop Simulation Models"

8 / 8 papers shown
Title
Estimating crop yields with remote sensing and deep learning
Estimating crop yields with remote sensing and deep learning
R. L. F. Cunha
B. Silva
38
14
0
21 Jul 2020
Optuna: A Next-generation Hyperparameter Optimization Framework
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
681
5,872
0
25 Jul 2019
Spatial-temporal Multi-Task Learning for Within-field Cotton Yield
  Prediction
Spatial-temporal Multi-Task Learning for Within-field Cotton Yield Prediction
L. Nguyen
Jiajie Zhen
Zhe Lin
Hanxiang Du
Zhou Yang
Wenxuan Guo
Fang Jin
38
30
0
16 Nov 2018
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Volodymyr Kuleshov
Nathan Fenner
Stefano Ermon
BDLUQCV
209
636
0
01 Jul 2018
A Scalable Machine Learning System for Pre-Season Agriculture Yield
  Forecast
A Scalable Machine Learning System for Pre-Season Agriculture Yield Forecast
Igor Oliveira
R. L. F. Cunha
B. Silva
M. Netto
47
64
0
25 Jun 2018
Deep UQ: Learning deep neural network surrogate models for high
  dimensional uncertainty quantification
Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification
Rohit Tripathy
Ilias Bilionis
AI4CE
71
411
0
02 Feb 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCVBDL
894
9,364
0
06 Jun 2015
Exploring multi-dimensional spaces: a Comparison of Latin Hypercube and
  Quasi Monte Carlo Sampling Techniques
Exploring multi-dimensional spaces: a Comparison of Latin Hypercube and Quasi Monte Carlo Sampling Techniques
S. Kucherenko
Daniel Albrecht
Andrea Saltelli
49
107
0
10 May 2015
1