ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.08494
  4. Cited By
Langevin Monte Carlo for strongly log-concave distributions: Randomized
  midpoint revisited

Langevin Monte Carlo for strongly log-concave distributions: Randomized midpoint revisited

14 June 2023
Lu Yu
Avetik G. Karagulyan
A. Dalalyan
ArXivPDFHTML

Papers citing "Langevin Monte Carlo for strongly log-concave distributions: Randomized midpoint revisited"

7 / 7 papers shown
Title
Beyond Propagation of Chaos: A Stochastic Algorithm for Mean Field Optimization
Beyond Propagation of Chaos: A Stochastic Algorithm for Mean Field Optimization
Chandan Tankala
Dheeraj M. Nagaraj
Anant Raj
44
0
0
17 Mar 2025
The Poisson Midpoint Method for Langevin Dynamics: Provably Efficient
  Discretization for Diffusion Models
The Poisson Midpoint Method for Langevin Dynamics: Provably Efficient Discretization for Diffusion Models
S. Kandasamy
Dheeraj M. Nagaraj
DiffM
33
2
0
27 May 2024
Log-Concave Sampling on Compact Supports: A Versatile Proximal Framework
Log-Concave Sampling on Compact Supports: A Versatile Proximal Framework
Lu Yu
16
0
0
24 May 2024
Parallelized Midpoint Randomization for Langevin Monte Carlo
Parallelized Midpoint Randomization for Langevin Monte Carlo
Lu Yu
A. Dalalyan
38
6
0
22 Feb 2024
Towards a Complete Analysis of Langevin Monte Carlo: Beyond Poincaré
  Inequality
Towards a Complete Analysis of Langevin Monte Carlo: Beyond Poincaré Inequality
Alireza Mousavi-Hosseini
Tyler Farghly
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
45
26
0
07 Mar 2023
Convergence of Langevin Monte Carlo in Chi-Squared and Renyi Divergence
Convergence of Langevin Monte Carlo in Chi-Squared and Renyi Divergence
Murat A. Erdogdu
Rasa Hosseinzadeh
Matthew Shunshi Zhang
88
41
0
22 Jul 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,156
0
06 Jun 2015
1