ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.07916
  4. Cited By
Identification of Nonlinear Latent Hierarchical Models
v1v2 (latest)

Identification of Nonlinear Latent Hierarchical Models

13 June 2023
Lingjing Kong
Erdun Gao
Feng Xie
Eric Xing
Yuejie Chi
Kun Zhang
    CML
ArXiv (abs)PDFHTML

Papers citing "Identification of Nonlinear Latent Hierarchical Models"

12 / 12 papers shown
Title
Learning Discrete Concepts in Latent Hierarchical Models
Learning Discrete Concepts in Latent Hierarchical Models
Lingjing Kong
Guan-Hong Chen
Erdun Gao
Eric P. Xing
Yuejie Chi
Kun Zhang
122
5
0
01 Jun 2024
On the Identifiability of Nonlinear ICA: Sparsity and Beyond
On the Identifiability of Nonlinear ICA: Sparsity and Beyond
Yujia Zheng
Ignavier Ng
Kun Zhang
CML
93
65
0
15 Jun 2022
Learning Temporally Causal Latent Processes from General Temporal Data
Learning Temporally Causal Latent Processes from General Temporal Data
Weiran Yao
Yuewen Sun
Alex Ho
Changyin Sun
Kun Zhang
BDLCML
91
87
0
11 Oct 2021
Disentanglement via Mechanism Sparsity Regularization: A New Principle
  for Nonlinear ICA
Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA
Sébastien Lachapelle
Pau Rodríguez López
Yash Sharma
Katie Everett
Rémi Le Priol
Alexandre Lacoste
Simon Lacoste-Julien
CMLOOD
100
141
0
21 Jul 2021
Learning latent causal graphs via mixture oracles
Learning latent causal graphs via mixture oracles
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
CML
78
48
0
29 Jun 2021
Understanding Latent Correlation-Based Multiview Learning and
  Self-Supervision: An Identifiability Perspective
Understanding Latent Correlation-Based Multiview Learning and Self-Supervision: An Identifiability Perspective
Qinjie Lyu
Xiao Fu
Weiran Wang
Songtao Lu
SSL
77
31
0
14 Jun 2021
Self-Supervised Learning with Data Augmentations Provably Isolates
  Content from Style
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style
Julius von Kügelgen
Yash Sharma
Luigi Gresele
Wieland Brendel
Bernhard Schölkopf
M. Besserve
Francesco Locatello
110
317
0
08 Jun 2021
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive
  Learning
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning
Aapo Hyvarinen
Hiroaki Sasaki
Richard Turner
OODCML
100
331
0
22 May 2018
Guaranteed Scalable Learning of Latent Tree Models
Guaranteed Scalable Learning of Latent Tree Models
Furong Huang
U. Niranjan
Ioakeim Perros
Robert Chen
Jimeng Sun
Anima Anandkumar
123
7
0
18 Jun 2014
Learning high-dimensional directed acyclic graphs with latent and
  selection variables
Learning high-dimensional directed acyclic graphs with latent and selection variables
Diego Colombo
Marloes H. Maathuis
M. Kalisch
Thomas S. Richardson
CML
132
467
0
29 Apr 2011
Learning Latent Tree Graphical Models
Learning Latent Tree Graphical Models
M. Choi
Vincent Y. F. Tan
Anima Anandkumar
A. Willsky
112
264
0
14 Sep 2010
Latent variable graphical model selection via convex optimization
Latent variable graphical model selection via convex optimization
V. Chandrasekaran
P. Parrilo
A. Willsky
CML
218
509
0
06 Aug 2010
1