Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2306.06414
Cited By
Revealing Model Biases: Assessing Deep Neural Networks via Recovered Sample Analysis
10 June 2023
M. Mehmanchi
Mahbod Nouri
Mohammad Sabokrou
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Revealing Model Biases: Assessing Deep Neural Networks via Recovered Sample Analysis"
9 / 9 papers shown
Title
Simplicity Bias in 1-Hidden Layer Neural Networks
Depen Morwani
Jatin Batra
Prateek Jain
Praneeth Netrapalli
69
21
0
01 Feb 2023
Learning an Invertible Output Mapping Can Mitigate Simplicity Bias in Neural Networks
Sravanti Addepalli
Anshul Nasery
R. Venkatesh Babu
Praneeth Netrapalli
Prateek Jain
AAML
88
3
0
04 Oct 2022
Reconstructing Training Data from Trained Neural Networks
Niv Haim
Gal Vardi
Gilad Yehudai
Ohad Shamir
Michal Irani
89
141
0
15 Jun 2022
Discover the Unknown Biased Attribute of an Image Classifier
Zhiheng Li
Chenliang Xu
71
50
0
29 Apr 2021
The Pitfalls of Simplicity Bias in Neural Networks
Harshay Shah
Kaustav Tamuly
Aditi Raghunathan
Prateek Jain
Praneeth Netrapalli
AAML
69
363
0
13 Jun 2020
Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data
Charles H. Martin
Tongsu Peng
Peng
Michael W. Mahoney
90
110
0
17 Feb 2020
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Kaifeng Lyu
Jian Li
98
336
0
13 Jun 2019
Heavy-Tailed Universality Predicts Trends in Test Accuracies for Very Large Pre-Trained Deep Neural Networks
Charles H. Martin
Michael W. Mahoney
44
56
0
24 Jan 2019
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
284
14,963
1
21 Dec 2013
1