ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.03897
  4. Cited By
DANSE: Data-driven Non-linear State Estimation of Model-free Process in
  Unsupervised Learning Setup

DANSE: Data-driven Non-linear State Estimation of Model-free Process in Unsupervised Learning Setup

4 June 2023
Anubhab Ghosh
Antoine Honoré
S. Chatterjee
ArXivPDFHTML

Papers citing "DANSE: Data-driven Non-linear State Estimation of Model-free Process in Unsupervised Learning Setup"

6 / 6 papers shown
Title
DIMM: Decoupled Multi-hierarchy Kalman Filter for 3D Object Tracking
DIMM: Decoupled Multi-hierarchy Kalman Filter for 3D Object Tracking
Jirong Zha
Yuxuan Fan
Kai Li
Han Li
Chen Gao
Xinlei Chen
Yong Li
4
0
0
18 May 2025
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Zhidi Lin
Ying Li
Feng Yin
Juan Maroñas
Alexandre Thiéry
54
0
0
24 Mar 2025
From Target Tracking to Targeting Track -- Part II: Regularized Polynomial Trajectory Optimization
Tiancheng Li
Y. Song
Guchong Li
Hao Li
46
2
0
22 Feb 2025
Flow-based Bayesian filtering for high-dimensional nonlinear stochastic dynamical systems
Xintong Wang
Xiaofei Guan
Ling Guo
Hao Wu
BDL
53
0
0
22 Feb 2025
AI-Aided Kalman Filters
AI-Aided Kalman Filters
Nir Shlezinger
Guy Revach
Anubhab Ghosh
S. Chatterjee
Shuo Tang
Tales Imbiriba
J. Duník
O. Straka
Pau Closas
Yonina C. Eldar
77
3
0
16 Oct 2024
Learning Flock: Enhancing Sets of Particles for Multi~Sub-State Particle
  Filtering with Neural Augmentation
Learning Flock: Enhancing Sets of Particles for Multi~Sub-State Particle Filtering with Neural Augmentation
Itai Nuri
Nir Shlezinger
31
0
0
21 Aug 2024
1