ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.02063
  4. Cited By
Exploring the Optimal Choice for Generative Processes in Diffusion
  Models: Ordinary vs Stochastic Differential Equations

Exploring the Optimal Choice for Generative Processes in Diffusion Models: Ordinary vs Stochastic Differential Equations

3 June 2023
Yu Cao
Jingrun Chen
Yixin Luo
Xiaoping Zhou
    DiffM
ArXivPDFHTML

Papers citing "Exploring the Optimal Choice for Generative Processes in Diffusion Models: Ordinary vs Stochastic Differential Equations"

4 / 4 papers shown
Title
Eta Inversion: Designing an Optimal Eta Function for Diffusion-based
  Real Image Editing
Eta Inversion: Designing an Optimal Eta Function for Diffusion-based Real Image Editing
Wonjun Kang
Kevin Galim
Hyung Il Koo
DiffM
34
5
0
14 Mar 2024
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions
M. S. Albergo
Nicholas M. Boffi
Eric Vanden-Eijnden
DiffM
257
263
0
15 Mar 2023
Sampling is as easy as learning the score: theory for diffusion models
  with minimal data assumptions
Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions
Sitan Chen
Sinho Chewi
Jungshian Li
Yuanzhi Li
Adil Salim
Anru R. Zhang
DiffM
135
248
0
22 Sep 2022
Diffusion Models in Vision: A Survey
Diffusion Models in Vision: A Survey
Florinel-Alin Croitoru
Vlad Hondru
Radu Tudor Ionescu
M. Shah
DiffM
VLM
MedIm
197
1,149
0
10 Sep 2022
1