ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.01187
  4. Cited By
Training neural operators to preserve invariant measures of chaotic
  attractors

Training neural operators to preserve invariant measures of chaotic attractors

1 June 2023
Ruoxi Jiang
Peter Y. Lu
Elena Orlova
Rebecca Willett
    AI4TS
ArXivPDFHTML

Papers citing "Training neural operators to preserve invariant measures of chaotic attractors"

19 / 19 papers shown
Title
True Zero-Shot Inference of Dynamical Systems Preserving Long-Term Statistics
True Zero-Shot Inference of Dynamical Systems Preserving Long-Term Statistics
Christoph Jürgen Hemmer
Daniel Durstewitz
AI4TS
SyDa
AI4CE
17
0
0
19 May 2025
Non-stationary Diffusion For Probabilistic Time Series Forecasting
Non-stationary Diffusion For Probabilistic Time Series Forecasting
Weiwei Ye
Zhuopeng Xu
Ning Gui
DiffM
66
0
0
07 May 2025
Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos
Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos
Chris Pedersen
L. Zanna
Joan Bruna
55
2
0
24 Mar 2025
Invariant Measures for Data-Driven Dynamical System Identification: Analysis and Application
Jonah Botvinick-Greenhouse
64
0
0
31 Jan 2025
Nested Diffusion Models Using Hierarchical Latent Priors
Nested Diffusion Models Using Hierarchical Latent Priors
Xiao Zhang
Ruoxi Jiang
Rebecca Willett
Michael Maire
BDL
DiffM
78
0
0
08 Dec 2024
When are dynamical systems learned from time series data statistically
  accurate?
When are dynamical systems learned from time series data statistically accurate?
Jeongjin Park
Nicole Yang
Nisha Chandramoorthy
AI4TS
41
4
0
09 Nov 2024
A scalable generative model for dynamical system reconstruction from
  neuroimaging data
A scalable generative model for dynamical system reconstruction from neuroimaging data
Eric Volkmann
Alena Brändle
Daniel Durstewitz
G. Koppe
AI4CE
33
2
0
05 Nov 2024
Learning Interpretable Hierarchical Dynamical Systems Models from Time Series Data
Learning Interpretable Hierarchical Dynamical Systems Models from Time Series Data
Manuel Brenner
Elias Weber
G. Koppe
Daniel Durstewitz
AI4TS
AI4CE
44
4
0
07 Oct 2024
Embed and Emulate: Contrastive representations for simulation-based
  inference
Embed and Emulate: Contrastive representations for simulation-based inference
Ruoxi Jiang
Peter Y. Lu
Rebecca Willett
36
0
0
27 Sep 2024
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
Hrishikesh Viswanath
Yue Chang
Julius Berner
Julius Berner
Peter Yichen Chen
Aniket Bera
AI4CE
68
2
0
04 Jul 2024
Probabilistic Forecasting with Stochastic Interpolants and Föllmer
  Processes
Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes
Yifan Chen
Mark Goldstein
Mengjian Hua
M. S. Albergo
Nicholas M. Boffi
Eric Vanden-Eijnden
AI4TS
33
17
0
20 Mar 2024
Out-of-Domain Generalization in Dynamical Systems Reconstruction
Out-of-Domain Generalization in Dynamical Systems Reconstruction
Niclas Alexander Göring
Florian Hess
Manuel Brenner
Zahra Monfared
Daniel Durstewitz
AI4CE
43
12
0
28 Feb 2024
DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic
  Systems
DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems
Yair Schiff
Zhong Yi Wan
Jeffrey B. Parker
Stephan Hoyer
Volodymyr Kuleshov
Fei Sha
Leonardo Zepeda-Núñez
36
13
0
06 Feb 2024
PICL: Physics Informed Contrastive Learning for Partial Differential
  Equations
PICL: Physics Informed Contrastive Learning for Partial Differential Equations
Cooper Lorsung
A. Farimani
AI4CE
33
4
0
29 Jan 2024
Integrating Multimodal Data for Joint Generative Modeling of Complex
  Dynamics
Integrating Multimodal Data for Joint Generative Modeling of Complex Dynamics
Manuela Brenner
Florian Hess
G. Koppe
Daniel Durstewitz
33
10
0
15 Dec 2022
Towards Multi-spatiotemporal-scale Generalized PDE Modeling
Towards Multi-spatiotemporal-scale Generalized PDE Modeling
Jayesh K. Gupta
Johannes Brandstetter
AI4CE
61
120
0
30 Sep 2022
On the difficulty of learning chaotic dynamics with RNNs
On the difficulty of learning chaotic dynamics with RNNs
Jonas M. Mikhaeil
Zahra Monfared
Daniel Durstewitz
64
53
0
14 Oct 2021
Auto-differentiable Ensemble Kalman Filters
Auto-differentiable Ensemble Kalman Filters
Yuming Chen
D. Sanz-Alonso
Rebecca Willett
44
34
0
16 Jul 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
268
2,309
0
18 Oct 2020
1