ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.00177
  4. Cited By
Contrastive Hierarchical Discourse Graph for Scientific Document
  Summarization

Contrastive Hierarchical Discourse Graph for Scientific Document Summarization

31 May 2023
Haopeng Zhang
Xiao Liu
Jiawei Zhang
    AILaw
ArXivPDFHTML

Papers citing "Contrastive Hierarchical Discourse Graph for Scientific Document Summarization"

7 / 7 papers shown
Title
DiffuSum: Generation Enhanced Extractive Summarization with Diffusion
DiffuSum: Generation Enhanced Extractive Summarization with Diffusion
Haopeng Zhang
Xiao Liu
Jiawei Zhang
DiffM
86
40
0
02 May 2023
Leveraging Information Bottleneck for Scientific Document Summarization
Leveraging Information Bottleneck for Scientific Document Summarization
Jiaxin Ju
Ming Liu
Huan Yee Koh
Yuan Jin
Lan Du
Shirui Pan
59
15
0
04 Oct 2021
Big Bird: Transformers for Longer Sequences
Big Bird: Transformers for Longer Sequences
Manzil Zaheer
Guru Guruganesh
Kumar Avinava Dubey
Joshua Ainslie
Chris Alberti
...
Philip Pham
Anirudh Ravula
Qifan Wang
Li Yang
Amr Ahmed
VLM
313
2,037
0
28 Jul 2020
On Extractive and Abstractive Neural Document Summarization with
  Transformer Language Models
On Extractive and Abstractive Neural Document Summarization with Transformer Language Models
Sandeep Subramanian
Raymond Li
Jonathan Pilault
C. Pal
251
217
0
07 Sep 2019
Text Summarization with Pretrained Encoders
Text Summarization with Pretrained Encoders
Yang Liu
Mirella Lapata
MILM
269
1,437
0
22 Aug 2019
SummaRuNNer: A Recurrent Neural Network based Sequence Model for
  Extractive Summarization of Documents
SummaRuNNer: A Recurrent Neural Network based Sequence Model for Extractive Summarization of Documents
Ramesh Nallapati
Feifei Zhai
Bowen Zhou
207
1,257
0
14 Nov 2016
Teaching Machines to Read and Comprehend
Teaching Machines to Read and Comprehend
Karl Moritz Hermann
Tomás Kociský
Edward Grefenstette
L. Espeholt
W. Kay
Mustafa Suleyman
Phil Blunsom
214
3,521
0
10 Jun 2015
1