Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.18543
Cited By
Robust Lipschitz Bandits to Adversarial Corruptions
29 May 2023
Yue Kang
Cho-Jui Hsieh
T. C. Lee
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robust Lipschitz Bandits to Adversarial Corruptions"
10 / 10 papers shown
Title
A Model Selection Approach for Corruption Robust Reinforcement Learning
Chen-Yu Wei
Christoph Dann
Julian Zimmert
99
45
0
31 Dec 2024
Nearly Optimal Algorithms for Linear Contextual Bandits with Adversarial Corruptions
Jiafan He
Dongruo Zhou
Tong Zhang
Quanquan Gu
87
47
0
13 May 2022
Linear Contextual Bandits with Adversarial Corruptions
Heyang Zhao
Dongruo Zhou
Quanquan Gu
AAML
67
24
0
25 Oct 2021
Syndicated Bandits: A Framework for Auto Tuning Hyper-parameters in Contextual Bandit Algorithms
Qin Ding
Yue Kang
Yi-Wei Liu
Thomas C. M. Lee
Cho-Jui Hsieh
James Sharpnack
68
8
0
05 Jun 2021
Robust Stochastic Linear Contextual Bandits Under Adversarial Attacks
Qin Ding
Cho-Jui Hsieh
James Sharpnack
AAML
46
33
0
05 Jun 2021
Achieving Near Instance-Optimality and Minimax-Optimality in Stochastic and Adversarial Linear Bandits Simultaneously
Chung-Wei Lee
Haipeng Luo
Chen-Yu Wei
Mengxiao Zhang
Xiaojin Zhang
65
49
0
11 Feb 2021
Stochastic Linear Optimization with Adversarial Corruption
Yingkai Li
Edmund Y. Lou
Liren Shan
AAML
43
42
0
04 Sep 2019
Better Algorithms for Stochastic Bandits with Adversarial Corruptions
Anupam Gupta
Tomer Koren
Kunal Talwar
AAML
81
152
0
22 Feb 2019
Nearly Optimal Adaptive Procedure with Change Detection for Piecewise-Stationary Bandit
Yang Cao
Zheng Wen
Branislav Kveton
Yao Xie
57
95
0
11 Feb 2018
Bandits and Experts in Metric Spaces
Robert D. Kleinberg
Aleksandrs Slivkins
E. Upfal
136
125
0
04 Dec 2013
1