Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.18471
Cited By
Convergence of AdaGrad for Non-convex Objectives: Simple Proofs and Relaxed Assumptions
29 May 2023
Bo Wang
Huishuai Zhang
Zhirui Ma
Wei Chen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Convergence of AdaGrad for Non-convex Objectives: Simple Proofs and Relaxed Assumptions"
36 / 36 papers shown
Title
On the
O
(
d
K
1
/
4
)
O(\frac{\sqrt{d}}{K^{1/4}})
O
(
K
1/4
d
)
Convergence Rate of AdamW Measured by
ℓ
1
\ell_1
ℓ
1
Norm
Huan Li
Yiming Dong
Zhouchen Lin
0
0
0
17 May 2025
Understanding Gradient Orthogonalization for Deep Learning via Non-Euclidean Trust-Region Optimization
Dmitry Kovalev
57
0
0
16 Mar 2025
On the Convergence of Adam-Type Algorithm for Bilevel Optimization under Unbounded Smoothness
Xiaochuan Gong
Jie Hao
Mingrui Liu
58
0
0
05 Mar 2025
Sparklen: A Statistical Learning Toolkit for High-Dimensional Hawkes Processes in Python
Romain Edmond Lacoste
GP
58
0
0
26 Feb 2025
A Nearly Optimal Single Loop Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness
Xiaochuan Gong
Jie Hao
Mingrui Liu
52
3
0
31 Dec 2024
Convergence Rate Analysis of LION
Yiming Dong
Huan Li
Zhouchen Lin
39
0
0
12 Nov 2024
Efficient Adaptive Optimization via Subset-Norm and Subspace-Momentum: Fast, Memory-Reduced Training with Convergence Guarantees
T. Nguyen
Huy Le Nguyen
ODL
33
0
0
11 Nov 2024
An Energy-Based Self-Adaptive Learning Rate for Stochastic Gradient Descent: Enhancing Unconstrained Optimization with VAV method
Jiahao Zhang
Christian Moya
Guang Lin
43
0
0
10 Nov 2024
An Attention-Based Algorithm for Gravity Adaptation Zone Calibration
Chen Yu
19
0
0
06 Oct 2024
An Accelerated Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness
Xiaochuan Gong
Jie Hao
Mingrui Liu
46
2
0
28 Sep 2024
ERM-Lasso classification algorithm for Multivariate Hawkes Processes paths
Charlotte Dion‐Blanc
Christophe Denis
Laure Sansonnet
Romain E Lacoste
44
1
0
16 Jul 2024
An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes
Antonio Orvieto
Lin Xiao
42
2
0
05 Jul 2024
Empirical Tests of Optimization Assumptions in Deep Learning
Hoang Tran
Qinzi Zhang
Ashok Cutkosky
41
1
0
01 Jul 2024
Large Batch Analysis for Adagrad Under Anisotropic Smoothness
Yuxing Liu
Rui Pan
Tong Zhang
26
5
0
21 Jun 2024
Convergence Analysis of Adaptive Gradient Methods under Refined Smoothness and Noise Assumptions
Devyani Maladkar
Ruichen Jiang
Aryan Mokhtari
38
6
0
07 Jun 2024
The High Line: Exact Risk and Learning Rate Curves of Stochastic Adaptive Learning Rate Algorithms
Elizabeth Collins-Woodfin
Inbar Seroussi
Begona García Malaxechebarría
Andrew W. Mackenzie
Elliot Paquette
Courtney Paquette
30
1
0
30 May 2024
Towards Stability of Parameter-free Optimization
Yijiang Pang
Shuyang Yu
Hoang Bao
Jiayu Zhou
34
1
0
07 May 2024
CLASSP: a Biologically-Inspired Approach to Continual Learning through Adjustment Suppression and Sparsity Promotion
Oswaldo Ludwig
21
0
0
29 Apr 2024
Convergence Guarantees for RMSProp and Adam in Generalized-smooth Non-convex Optimization with Affine Noise Variance
Qi Zhang
Yi Zhou
Shaofeng Zou
42
3
0
01 Apr 2024
On the Convergence of Adam under Non-uniform Smoothness: Separability from SGDM and Beyond
Bohan Wang
Huishuai Zhang
Qi Meng
Ruoyu Sun
Zhi-Ming Ma
Wei Chen
37
7
0
22 Mar 2024
Why Transformers Need Adam: A Hessian Perspective
Yushun Zhang
Congliang Chen
Tian Ding
Ziniu Li
Ruoyu Sun
Zhimin Luo
37
43
0
26 Feb 2024
Revisiting Convergence of AdaGrad with Relaxed Assumptions
Yusu Hong
Junhong Lin
28
12
0
21 Feb 2024
AdAdaGrad: Adaptive Batch Size Schemes for Adaptive Gradient Methods
Tim Tsz-Kit Lau
Han Liu
Mladen Kolar
ODL
24
6
0
17 Feb 2024
Towards Quantifying the Preconditioning Effect of Adam
Rudrajit Das
Naman Agarwal
Sujay Sanghavi
Inderjit S. Dhillon
20
5
0
11 Feb 2024
On Convergence of Adam for Stochastic Optimization under Relaxed Assumptions
Yusu Hong
Junhong Lin
46
10
0
06 Feb 2024
Stochastic Two Points Method for Deep Model Zeroth-order Optimization
Yijiang Pang
Jiayu Zhou
22
0
0
02 Feb 2024
Bilevel Optimization under Unbounded Smoothness: A New Algorithm and Convergence Analysis
Jie Hao
Xiaochuan Gong
Mingrui Liu
30
7
0
17 Jan 2024
Parameter-Agnostic Optimization under Relaxed Smoothness
Florian Hübler
Junchi Yang
Xiang Li
Niao He
31
12
0
06 Nov 2023
Signal Processing Meets SGD: From Momentum to Filter
Zhipeng Yao
Guisong Chang
Jiaqi Zhang
Qi Zhang
Dazhou Li
Yu Zhang
ODL
29
0
0
06 Nov 2023
High Probability Convergence of Adam Under Unbounded Gradients and Affine Variance Noise
Yusu Hong
Junhong Lin
25
7
0
03 Nov 2023
Closing the Gap Between the Upper Bound and the Lower Bound of Adam's Iteration Complexity
Bohan Wang
Jingwen Fu
Huishuai Zhang
Nanning Zheng
Wei Chen
15
17
0
27 Oct 2023
Convergence of Adam for Non-convex Objectives: Relaxed Hyperparameters and Non-ergodic Case
Meixuan He
Yuqing Liang
Jinlan Liu
Dongpo Xu
19
8
0
20 Jul 2023
Convergence of Adam Under Relaxed Assumptions
Haochuan Li
Alexander Rakhlin
Ali Jadbabaie
37
54
0
27 Apr 2023
Beyond Uniform Smoothness: A Stopped Analysis of Adaptive SGD
Matthew Faw
Litu Rout
C. Caramanis
Sanjay Shakkottai
16
37
0
13 Feb 2023
A High Probability Analysis of Adaptive SGD with Momentum
Xiaoyun Li
Francesco Orabona
92
65
0
28 Jul 2020
A Simple Convergence Proof of Adam and Adagrad
Alexandre Défossez
Léon Bottou
Francis R. Bach
Nicolas Usunier
56
143
0
05 Mar 2020
1