Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.18285
Cited By
Partially Personalized Federated Learning: Breaking the Curse of Data Heterogeneity
29 May 2023
Konstantin Mishchenko
Rustem Islamov
Eduard A. Gorbunov
Samuel Horváth
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Partially Personalized Federated Learning: Breaking the Curse of Data Heterogeneity"
8 / 8 papers shown
Title
Trial and Trust: Addressing Byzantine Attacks with Comprehensive Defense Strategy
Gleb Molodtsov
Daniil Medyakov
Sergey Skorik
Nikolas Khachaturov
Shahane Tigranyan
Vladimir Aletov
A. Avetisyan
Martin Takáč
Aleksandr Beznosikov
AAML
35
0
0
12 May 2025
Personalized Federated Training of Diffusion Models with Privacy Guarantees
Kumar Kshitij Patel
Weitong Zhang
Lingxiao Wang
MedIm
50
0
0
01 Apr 2025
Collaborative and Efficient Personalization with Mixtures of Adaptors
Abdulla Jasem Almansoori
Samuel Horváth
Martin Takáč
FedML
44
2
0
04 Oct 2024
Fine-Tuning Personalization in Federated Learning to Mitigate Adversarial Clients
Youssef Allouah
Abdellah El Mrini
R. Guerraoui
Nirupam Gupta
Rafael Pinot
FedML
32
0
0
30 Sep 2024
Adaptive Model Pruning and Personalization for Federated Learning over Wireless Networks
Xiaonan Liu
T. Ratnarajah
M. Sellathurai
Yonina C. Eldar
32
4
0
04 Sep 2023
FedBN: Federated Learning on Non-IID Features via Local Batch Normalization
Xiaoxiao Li
Meirui Jiang
Xiaofei Zhang
Michael Kamp
Qi Dou
OOD
FedML
168
787
0
15 Feb 2021
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
183
355
0
07 Dec 2020
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
183
639
0
19 Sep 2019
1