ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.17275
  4. Cited By
Local Convergence of Gradient Methods for Min-Max Games: Partial
  Curvature Generically Suffices

Local Convergence of Gradient Methods for Min-Max Games: Partial Curvature Generically Suffices

26 May 2023
Guillaume Wang
Lénaïc Chizat
ArXivPDFHTML

Papers citing "Local Convergence of Gradient Methods for Min-Max Games: Partial Curvature Generically Suffices"

2 / 2 papers shown
Title
Limiting Behaviors of Nonconvex-Nonconcave Minimax Optimization via
  Continuous-Time Systems
Limiting Behaviors of Nonconvex-Nonconcave Minimax Optimization via Continuous-Time Systems
Benjamin Grimmer
Haihao Lu
Pratik Worah
Vahab Mirrokni
34
7
0
20 Oct 2020
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave
  Saddle Point Problems without Strong Convexity
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity
S. Du
Wei Hu
58
120
0
05 Feb 2018
1