Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.17170
Cited By
Error Bounds for Learning with Vector-Valued Random Features
26 May 2023
S. Lanthaler
Nicholas H. Nelsen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Error Bounds for Learning with Vector-Valued Random Features"
11 / 11 papers shown
Title
Joker: Joint Optimization Framework for Lightweight Kernel Machines
Junhong Zhang
Zhihui Lai
45
0
0
23 May 2025
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
115
7
0
30 Jun 2024
Minimax Optimal Kernel Operator Learning via Multilevel Training
Jikai Jin
Yiping Lu
Jose H. Blanchet
Lexing Ying
78
13
0
28 Sep 2022
Concentration of Random Feature Matrices in High-Dimensions
Zhijun Chen
Hayden Schaeffer
Rachel A. Ward
68
6
0
14 Apr 2022
Convergence Rates for Learning Linear Operators from Noisy Data
Maarten V. de Hoop
Nikola B. Kovachki
Nicholas H. Nelsen
Andrew M. Stuart
161
57
0
27 Aug 2021
Learning Partial Differential Equations in Reproducing Kernel Hilbert Spaces
George Stepaniants
62
19
0
26 Aug 2021
Generalization error of random features and kernel methods: hypercontractivity and kernel matrix concentration
Song Mei
Theodor Misiakiewicz
Andrea Montanari
81
111
0
26 Jan 2021
DeepGreen: Deep Learning of Green's Functions for Nonlinear Boundary Value Problems
Craig Gin
D. Shea
Steven L. Brunton
J. Nathan Kutz
52
89
0
31 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
494
2,401
0
18 Oct 2020
Approximation Bounds for Random Neural Networks and Reservoir Systems
Lukas Gonon
Lyudmila Grigoryeva
Juan-Pablo Ortega
77
67
0
14 Feb 2020
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
235
2,123
0
08 Oct 2019
1