Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.16905
Cited By
Improving Neural Additive Models with Bayesian Principles
26 May 2023
Kouroche Bouchiat
Alexander Immer
Hugo Yèche
Gunnar Rätsch
Vincent Fortuin
BDL
MedIm
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving Neural Additive Models with Bayesian Principles"
18 / 18 papers shown
Title
Structural Neural Additive Models: Enhanced Interpretable Machine Learning
Mattias Luber
Anton Thielmann
Benjamin Säfken
44
8
0
18 Feb 2023
Why do tree-based models still outperform deep learning on tabular data?
Léo Grinsztajn
Edouard Oyallon
Gaël Varoquaux
LMTD
56
361
0
18 Jul 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
BDL
56
29
0
17 Jun 2022
Neural Basis Models for Interpretability
Filip Radenovic
Abhimanyu Dubey
D. Mahajan
FAtt
75
47
0
27 May 2022
Sparse Neural Additive Model: Interpretable Deep Learning with Feature Selection via Group Sparsity
Shiyun Xu
Zhiqi Bu
Pratik Chaudhari
Ian Barnett
45
22
0
25 Feb 2022
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
108
305
0
28 Jun 2021
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
36
39
0
10 Jun 2021
BNNpriors: A library for Bayesian neural network inference with different prior distributions
Vincent Fortuin
Adrià Garriga-Alonso
Mark van der Wilk
Laurence Aitchison
BDL
UQCV
23
24
0
14 May 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
67
127
0
14 May 2021
Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning
Alexander Immer
Matthias Bauer
Vincent Fortuin
Gunnar Rätsch
Mohammad Emtiyaz Khan
BDL
UQCV
89
107
0
11 Apr 2021
Bayesian Neural Network Priors Revisited
Vincent Fortuin
Adrià Garriga-Alonso
Sebastian W. Ober
F. Wenzel
Gunnar Rätsch
Richard Turner
Mark van der Wilk
Laurence Aitchison
BDL
UQCV
79
140
0
12 Feb 2021
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Laurent Valentin Jospin
Wray Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OOD
BDL
UQCV
53
620
0
14 Jul 2020
lgpr: An interpretable nonparametric method for inferring covariate effects from longitudinal data
Juho Timonen
Henrik Mannerstrom
Aki Vehtari
Harri Lähdesmäki
26
14
0
07 Dec 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
64
801
0
07 Feb 2019
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
84
269
0
13 Jun 2018
The Expressive Power of Neural Networks: A View from the Width
Zhou Lu
Hongming Pu
Feicheng Wang
Zhiqiang Hu
Liwei Wang
58
886
0
08 Sep 2017
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
127
1,500
0
08 Jun 2015
Additive Gaussian Processes
David Duvenaud
H. Nickisch
C. Rasmussen
GP
77
329
0
19 Dec 2011
1