ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.16614
  4. Cited By
Physics-Regulated Deep Reinforcement Learning: Invariant Embeddings
v1v2 (latest)

Physics-Regulated Deep Reinforcement Learning: Invariant Embeddings

26 May 2023
H. Cao
Y. Mao
L. Sha
Marco Caccamo
    PINNAI4CE
ArXiv (abs)PDFHTML

Papers citing "Physics-Regulated Deep Reinforcement Learning: Invariant Embeddings"

24 / 24 papers shown
Title
Lyapunov Design for Robust and Efficient Robotic Reinforcement Learning
Lyapunov Design for Robust and Efficient Robotic Reinforcement Learning
T. Westenbroek
F. Castañeda
Ayush Agrawal
S. Shankar Sastry
Koushil Sreenath
86
25
0
13 Aug 2022
Bayesian Controller Fusion: Leveraging Control Priors in Deep
  Reinforcement Learning for Robotics
Bayesian Controller Fusion: Leveraging Control Priors in Deep Reinforcement Learning for Robotics
Krishan Rana
Vibhavari Dasagi
Jesse Haviland
Ben Talbot
Michael Milford
Niko Sünderhauf
BDLOffRL
76
34
0
21 Jul 2021
Stabilizing Neural Control Using Self-Learned Almost Lyapunov Critics
Stabilizing Neural Control Using Self-Learned Almost Lyapunov Critics
Ya-Chien Chang
Sicun Gao
87
59
0
11 Jul 2021
Learning Vision-Guided Quadrupedal Locomotion End-to-End with
  Cross-Modal Transformers
Learning Vision-Guided Quadrupedal Locomotion End-to-End with Cross-Modal Transformers
Ruihan Yang
Minghao Zhang
Nicklas Hansen
Huazhe Xu
Xiaolong Wang
OffRL
73
108
0
08 Jul 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CEPINN
90
69
0
02 Jul 2021
Physics-informed neural networks with hard constraints for inverse
  design
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
100
521
0
09 Feb 2021
Theory-guided hard constraint projection (HCP): a knowledge-based
  data-driven scientific machine learning method
Theory-guided hard constraint projection (HCP): a knowledge-based data-driven scientific machine learning method
Yuntian Chen
Dou Huang
Dongxiao Zhang
Junsheng Zeng
Nanzhe Wang
Haoran Zhang
Jinyue Yan
PINN
69
109
0
11 Dec 2020
Learning a Contact-Adaptive Controller for Robust, Efficient Legged
  Locomotion
Learning a Contact-Adaptive Controller for Robust, Efficient Legged Locomotion
Xingye Da
Zhaoming Xie
David Hoeller
Byron Boots
Anima Anandkumar
Yuke Zhu
Buck Babich
Animesh Garg
87
58
0
21 Sep 2020
Isometric Transformation Invariant and Equivariant Graph Convolutional
  Networks
Isometric Transformation Invariant and Equivariant Graph Convolutional Networks
Masanobu Horie
Naoki Morita
Toshiaki Hishinuma
Yushi Ihara
Naoto Mitsume
GNN
62
23
0
13 May 2020
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
178
438
0
10 Mar 2020
Incorporating Symmetry into Deep Dynamics Models for Improved
  Generalization
Incorporating Symmetry into Deep Dynamics Models for Improved Generalization
Rui Wang
Robin Walters
Rose Yu
AI4CE
136
177
0
08 Feb 2020
Physics-Guided Machine Learning for Scientific Discovery: An Application
  in Simulating Lake Temperature Profiles
Physics-Guided Machine Learning for Scientific Discovery: An Application in Simulating Lake Temperature Profiles
X. Jia
J. Willard
Anuj Karpatne
J. Read
Jacob Aaron Zwart
M. Steinbach
Vipin Kumar
AI4CEPINN
93
214
0
28 Jan 2020
Learning Compositional Koopman Operators for Model-Based Control
Learning Compositional Koopman Operators for Model-Based Control
Yunzhu Li
Hao He
Jiajun Wu
Dina Katabi
Antonio Torralba
105
121
0
18 Oct 2019
When to Trust Your Model: Model-Based Policy Optimization
When to Trust Your Model: Model-Based Policy Optimization
Michael Janner
Justin Fu
Marvin Zhang
Sergey Levine
OffRL
113
957
0
19 Jun 2019
Residual Reinforcement Learning for Robot Control
Residual Reinforcement Learning for Robot Control
T. Johannink
Shikhar Bahl
Ashvin Nair
Jianlan Luo
Avinash Kumar
M. Loskyll
J. A. Ojea
Eugen Solowjow
Sergey Levine
OffRL
84
420
0
07 Dec 2018
Learning to Drive in a Day
Learning to Drive in a Day
Alex Kendall
Jeffrey Hawke
David Janz
Przemyslaw Mazur
Daniele Reda
John M. Allen
Vinh-Dieu Lam
Alex Bewley
Amar Shah
111
658
0
01 Jul 2018
Non-asymptotic Identification of LTI Systems from a Single Trajectory
Non-asymptotic Identification of LTI Systems from a Single Trajectory
Samet Oymak
N. Ozay
69
226
0
14 Jun 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
317
8,432
0
04 Jan 2018
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
580
19,315
0
20 Jul 2017
Adversarial Attacks on Neural Network Policies
Adversarial Attacks on Neural Network Policies
Sandy Huang
Nicolas Papernot
Ian Goodfellow
Yan Duan
Pieter Abbeel
MLAUAAML
102
840
0
08 Feb 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
327
1,875
0
03 Feb 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
438
1,824
0
25 Nov 2016
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
  Systems
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
Martín Abadi
Ashish Agarwal
P. Barham
E. Brevdo
Zhiwen Chen
...
Pete Warden
Martin Wattenberg
Martin Wicke
Yuan Yu
Xiaoqiang Zheng
294
11,155
0
14 Mar 2016
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
330
13,295
0
09 Sep 2015
1