Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.16051
Cited By
What about em? How Commercial Machine Translation Fails to Handle (Neo-)Pronouns
25 May 2023
Anne Lauscher
Debora Nozza
Archie Crowley
E. Miltersen
Dirk Hovy
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"What about em? How Commercial Machine Translation Fails to Handle (Neo-)Pronouns"
14 / 14 papers shown
Title
Consistency is Key: Disentangling Label Variation in Natural Language Processing with Intra-Annotator Agreement
Gavin Abercrombie
Verena Rieser
Dirk Hovy
76
17
0
25 Jan 2023
Choose Your Lenses: Flaws in Gender Bias Evaluation
Hadas Orgad
Yonatan Belinkov
72
37
0
20 Oct 2022
How Conservative are Language Models? Adapting to the Introduction of Gender-Neutral Pronouns
Stephanie Brandl
Ruixiang Cui
Anders Søgaard
69
21
0
11 Apr 2022
Fair and Argumentative Language Modeling for Computational Argumentation
Carolin Holtermann
Anne Lauscher
Simone Paolo Ponzetto
42
21
0
08 Apr 2022
Collecting a Large-Scale Gender Bias Dataset for Coreference Resolution and Machine Translation
Shahar Levy
Koren Lazar
Gabriel Stanovsky
65
70
0
08 Sep 2021
Harms of Gender Exclusivity and Challenges in Non-Binary Representation in Language Technologies
Sunipa Dev
Masoud Monajatipoor
Anaelia Ovalle
Arjun Subramonian
J. M. Phillips
Kai-Wei Chang
116
170
0
27 Aug 2021
RedditBias: A Real-World Resource for Bias Evaluation and Debiasing of Conversational Language Models
Soumya Barikeri
Anne Lauscher
Ivan Vulić
Goran Glavaš
91
182
0
07 Jun 2021
Gender Bias Amplification During Speed-Quality Optimization in Neural Machine Translation
Adithya Renduchintala
Denise Díaz
Kenneth Heafield
Xian Li
Mona T. Diab
56
41
0
01 Jun 2021
Gender Bias in Machine Translation
Beatrice Savoldi
Marco Gaido
L. Bentivogli
Matteo Negri
Marco Turchi
154
206
0
13 Apr 2021
Neural Machine Translation Doesn't Translate Gender Coreference Right Unless You Make It
Danielle Saunders
Rosie Sallis
Bill Byrne
60
64
0
11 Oct 2020
Language (Technology) is Power: A Critical Survey of "Bias" in NLP
Su Lin Blodgett
Solon Barocas
Hal Daumé
Hanna M. Wallach
155
1,248
0
28 May 2020
Automatically Identifying Gender Issues in Machine Translation using Perturbations
Hila Gonen
Kellie Webster
71
40
0
29 Apr 2020
Reducing Gender Bias in Neural Machine Translation as a Domain Adaptation Problem
Danielle Saunders
Bill Byrne
AI4CE
121
140
0
09 Apr 2020
Toward Gender-Inclusive Coreference Resolution
Yang Trista Cao
Hal Daumé
78
145
0
30 Oct 2019
1