Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.15792
Cited By
IDEA: Invariant Defense for Graph Adversarial Robustness
25 May 2023
Shuchang Tao
Qi Cao
Huawei Shen
Yunfan Wu
Bingbing Xu
Xueqi Cheng
AAML
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"IDEA: Invariant Defense for Graph Adversarial Robustness"
8 / 8 papers shown
Title
Exploring Causal Learning through Graph Neural Networks: An In-depth Review
Simi Job
Xiaohui Tao
Taotao Cai
Haoran Xie
Lin Li
Jianming Yong
Qing Li
CML
AI4CE
38
5
0
25 Nov 2023
Does Invariant Graph Learning via Environment Augmentation Learn Invariance?
Yongqiang Chen
Yatao Bian
Kaiwen Zhou
Binghui Xie
Bo Han
James Cheng
OOD
31
34
0
29 Oct 2023
DAD++: Improved Data-free Test Time Adversarial Defense
Gaurav Kumar Nayak
Inder Khatri
Shubham Randive
Ruchit Rawal
Anirban Chakraborty
AAML
21
1
0
10 Sep 2023
Revisiting Robustness in Graph Machine Learning
Lukas Gosch
Daniel Sturm
Simon Geisler
Stephan Günnemann
AAML
OOD
72
21
0
01 May 2023
Adversarial Camouflage for Node Injection Attack on Graphs
Shuchang Tao
Qi Cao
Huawei Shen
Yunfan Wu
Liang Hou
Fei Sun
Xueqi Cheng
AAML
GNN
30
21
0
03 Aug 2022
Elastic Graph Neural Networks
Xiaorui Liu
W. Jin
Yao Ma
Yaxin Li
Hua Liu
Yiqi Wang
Ming Yan
Jiliang Tang
92
107
0
05 Jul 2021
Robust Optimization as Data Augmentation for Large-scale Graphs
Kezhi Kong
Bernard Ghanem
Mucong Ding
Zuxuan Wu
Chen Zhu
Guohao Li
Gavin Taylor
Tom Goldstein
106
74
0
19 Oct 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
1