ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.15508
  4. Cited By
How to Fix a Broken Confidence Estimator: Evaluating Post-hoc Methods
  for Selective Classification with Deep Neural Networks

How to Fix a Broken Confidence Estimator: Evaluating Post-hoc Methods for Selective Classification with Deep Neural Networks

24 May 2023
L. F. P. Cattelan
Danilo Silva
    UQCV
ArXivPDFHTML

Papers citing "How to Fix a Broken Confidence Estimator: Evaluating Post-hoc Methods for Selective Classification with Deep Neural Networks"

24 / 24 papers shown
Title
Uncertainty-Aware Step-wise Verification with Generative Reward Models
Uncertainty-Aware Step-wise Verification with Generative Reward Models
Zihuiwen Ye
Luckeciano C. Melo
Younesse Kaddar
Phil Blunsom
Shivalika Singh
Yarin Gal
LRM
114
4
0
16 Feb 2025
A Novel Characterization of the Population Area Under the Risk Coverage Curve (AURC) and Rates of Finite Sample Estimators
A Novel Characterization of the Population Area Under the Risk Coverage Curve (AURC) and Rates of Finite Sample Estimators
Han Zhou
Jordy Van Landeghem
Teodora Popordanoska
Matthew B. Blaschko
111
3
0
20 Oct 2024
Simple and Efficient Confidence Score for Grading Whole Slide Images
Simple and Efficient Confidence Score for Grading Whole Slide Images
M. Lubrano
Yaëlle Bellahsen-Harrar
Rutger Fick
C. Badoual
Thomas Walter
25
3
0
08 Mar 2023
Rethinking Confidence Calibration for Failure Prediction
Rethinking Confidence Calibration for Failure Prediction
Fei Zhu
Zhen Cheng
Xu-Yao Zhang
Cheng-Lin Liu
UQCV
77
41
0
06 Mar 2023
Adaptive Temperature Scaling for Robust Calibration of Deep Neural
  Networks
Adaptive Temperature Scaling for Robust Calibration of Deep Neural Networks
Sérgio A. Balanya
Juan Maroñas
Daniel Ramos
OOD
63
14
0
31 Jul 2022
Towards Better Selective Classification
Towards Better Selective Classification
Leo Feng
Mohamed Osama Ahmed
Hossein Hajimirsadeghi
A. Abdi
49
23
0
17 Jun 2022
Mitigating Neural Network Overconfidence with Logit Normalization
Mitigating Neural Network Overconfidence with Logit Normalization
Hongxin Wei
Renchunzi Xie
Hao-Ran Cheng
Lei Feng
Bo An
Yixuan Li
OODD
220
283
0
19 May 2022
Deep Ensembles Work, But Are They Necessary?
Deep Ensembles Work, But Are They Necessary?
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
R. Zemel
John P. Cunningham
OOD
UQCV
111
63
0
14 Feb 2022
Soft Calibration Objectives for Neural Networks
Soft Calibration Objectives for Neural Networks
A. Karandikar
Nicholas Cain
Dustin Tran
Balaji Lakshminarayanan
Jonathon Shlens
Michael C. Mozer
Becca Roelofs
UQCV
74
89
0
30 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
229
1,149
0
07 Jul 2021
Parameterized Temperature Scaling for Boosting the Expressive Power in
  Post-Hoc Uncertainty Calibration
Parameterized Temperature Scaling for Boosting the Expressive Power in Post-Hoc Uncertainty Calibration
Christian Tomani
Daniel Cremers
Florian Buettner
UQCV
44
36
0
24 Feb 2021
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
324
1,917
0
12 Nov 2020
Energy-based Out-of-distribution Detection
Energy-based Out-of-distribution Detection
Weitang Liu
Xiaoyun Wang
John Douglas Owens
Yixuan Li
OODD
271
1,355
0
08 Oct 2020
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
  Calibration in Deep Learning
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning
Jize Zhang
B. Kailkhura
T. Y. Han
UQCV
76
227
0
16 Mar 2020
Calibrating Deep Neural Networks using Focal Loss
Calibrating Deep Neural Networks using Focal Loss
Jishnu Mukhoti
Viveka Kulharia
Amartya Sanyal
Stuart Golodetz
Philip Torr
P. Dokania
UQCV
81
461
0
21 Feb 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
  Learning
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
79
319
0
15 Feb 2020
Scaling Out-of-Distribution Detection for Real-World Settings
Scaling Out-of-Distribution Detection for Real-World Settings
Dan Hendrycks
Steven Basart
Mantas Mazeika
Andy Zou
Joe Kwon
Mohammadreza Mostajabi
Jacob Steinhardt
D. Song
OODD
167
479
0
25 Nov 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
162
1,691
0
06 Jun 2019
Do ImageNet Classifiers Generalize to ImageNet?
Do ImageNet Classifiers Generalize to ImageNet?
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
OOD
SSeg
VLM
113
1,714
0
13 Feb 2019
SelectiveNet: A Deep Neural Network with an Integrated Reject Option
SelectiveNet: A Deep Neural Network with an Integrated Reject Option
Yonatan Geifman
Ran El-Yaniv
CVBM
OOD
118
310
0
26 Jan 2019
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
276
9,760
0
25 Oct 2017
Selective Classification for Deep Neural Networks
Selective Classification for Deep Neural Networks
Yonatan Geifman
Ran El-Yaniv
CVBM
92
526
0
23 May 2017
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
155
3,452
0
07 Oct 2016
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
878
27,358
0
02 Dec 2015
1