ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.10690
  4. Cited By
Sampling, Diffusions, and Stochastic Localization

Sampling, Diffusions, and Stochastic Localization

18 May 2023
Andrea Montanari
    DiffM
ArXivPDFHTML

Papers citing "Sampling, Diffusions, and Stochastic Localization"

8 / 8 papers shown
Title
Diffusion Models are Secretly Exchangeable: Parallelizing DDPMs via Autospeculation
Diffusion Models are Secretly Exchangeable: Parallelizing DDPMs via Autospeculation
Hengyuan Hu
Aniket Das
Dorsa Sadigh
Nima Anari
DiffM
28
0
0
06 May 2025
Improving the evaluation of samplers on multi-modal targets
Improving the evaluation of samplers on multi-modal targets
Louis Grenioux
Maxence Noble
Marylou Gabrié
188
0
0
11 Apr 2025
Manifolds, Random Matrices and Spectral Gaps: The geometric phases of generative diffusion
Manifolds, Random Matrices and Spectral Gaps: The geometric phases of generative diffusion
Enrico Ventura
Beatrice Achilli
Gianluigi Silvestri
Carlo Lucibello
L. Ambrogioni
DiffM
34
5
0
08 Oct 2024
U-Nets as Belief Propagation: Efficient Classification, Denoising, and
  Diffusion in Generative Hierarchical Models
U-Nets as Belief Propagation: Efficient Classification, Denoising, and Diffusion in Generative Hierarchical Models
Song Mei
3DV
AI4CE
DiffM
45
11
0
29 Apr 2024
Nearly $d$-Linear Convergence Bounds for Diffusion Models via Stochastic
  Localization
Nearly ddd-Linear Convergence Bounds for Diffusion Models via Stochastic Localization
Joe Benton
Valentin De Bortoli
Arnaud Doucet
George Deligiannidis
DiffM
54
103
0
07 Aug 2023
Concrete Score Matching: Generalized Score Matching for Discrete Data
Concrete Score Matching: Generalized Score Matching for Discrete Data
Chenlin Meng
Kristy Choi
Jiaming Song
Stefano Ermon
DiffM
200
53
0
02 Nov 2022
A Continuous Time Framework for Discrete Denoising Models
A Continuous Time Framework for Discrete Denoising Models
Andrew Campbell
Joe Benton
Valentin De Bortoli
Tom Rainforth
George Deligiannidis
Arnaud Doucet
DiffM
197
135
0
30 May 2022
Argmax Flows and Multinomial Diffusion: Learning Categorical
  Distributions
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
222
396
0
10 Feb 2021
1