Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.09235
Cited By
Synthetic data, real errors: how (not) to publish and use synthetic data
16 May 2023
B. V. Breugel
Zhaozhi Qian
M. Schaar
SyDa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Synthetic data, real errors: how (not) to publish and use synthetic data"
13 / 13 papers shown
Title
GAUDA: Generative Adaptive Uncertainty-guided Diffusion-based Augmentation for Surgical Segmentation
Yannik Frisch
Christina Bornberg
Moritz Fuchs
Anirban Mukhopadhyay
MedIm
30
0
0
18 Jan 2025
Debiasing Synthetic Data Generated by Deep Generative Models
A. Decruyenaere
Heidelinde Dehaene
Paloma Rabaey
Christiaan Polet
Johan Decruyenaere
Thomas Demeester
S. Vansteelandt
AI4CE
31
0
0
06 Nov 2024
Montessori-Instruct: Generate Influential Training Data Tailored for Student Learning
Xiaochuan Li
Zichun Yu
Chenyan Xiong
SyDa
31
1
0
18 Oct 2024
Generating Diverse Agricultural Data for Vision-Based Farming Applications
Mikolaj Cieslak
Umabharathi Govindarajan
Alejandro Garcia
Anuradha Chandrashekar
Torsten Hädrich
Aleksander Mendoza-Drosik
D. L. Michels
Soren Pirk
Chia-Chun Fu
Wojciech Palubicki
25
7
0
27 Mar 2024
A Bias-Variance Decomposition for Ensembles over Multiple Synthetic Datasets
Ossi Raisa
Antti Honkela
72
0
0
06 Feb 2024
Generative Semi-supervised Learning with Meta-Optimized Synthetic Samples
Shinýa Yamaguchi
35
2
0
28 Sep 2023
On Consistent Bayesian Inference from Synthetic Data
Ossi Raisa
Joonas Jälkö
Antti Honkela
SyDa
26
2
0
26 May 2023
Utility Theory of Synthetic Data Generation
Shi Xu
W. Sun
Guang Cheng
25
5
0
17 May 2023
Conditional Synthetic Data Generation for Robust Machine Learning Applications with Limited Pandemic Data
Hari Prasanna Das
Ryan Tran
Japjot Singh
Xiangyu Yue
G. Tison
Alberto L. Sangiovanni-Vincentelli
C. Spanos
OOD
MedIm
57
51
0
14 Sep 2021
How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating and Auditing Generative Models
Ahmed Alaa
B. V. Breugel
Evgeny S. Saveliev
M. Schaar
50
186
0
17 Feb 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh V. Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
163
25,247
0
09 Jun 2011
1