Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.08075
Cited By
Analyzing Compression Techniques for Computer Vision
14 May 2023
Maniratnam Mandal
Imran Khan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Analyzing Compression Techniques for Computer Vision"
17 / 17 papers shown
Title
Carbon Emissions and Large Neural Network Training
David A. Patterson
Joseph E. Gonzalez
Quoc V. Le
Chen Liang
Lluís-Miquel Munguía
D. Rothchild
David R. So
Maud Texier
J. Dean
AI4CE
331
665
0
21 Apr 2021
Optimal stable Ornstein-Uhlenbeck regression
Hiroki Masuda
27
30
0
08 Jun 2020
An Overview of Neural Network Compression
James OÑeill
AI4CE
81
99
0
05 Jun 2020
Improved Knowledge Distillation via Teacher Assistant
Seyed Iman Mirzadeh
Mehrdad Farajtabar
Ang Li
Nir Levine
Akihiro Matsukawa
H. Ghasemzadeh
92
1,074
0
09 Feb 2019
Quantizing deep convolutional networks for efficient inference: A whitepaper
Raghuraman Krishnamoorthi
MQ
119
1,013
0
21 Jun 2018
Deep Networks with Stochastic Depth
Gao Huang
Yu Sun
Zhuang Liu
Daniel Sedra
Kilian Q. Weinberger
185
2,352
0
30 Mar 2016
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
142
1,930
0
24 Feb 2016
Binarized Neural Networks
Itay Hubara
Daniel Soudry
Ran El-Yaniv
MQ
161
1,349
0
08 Feb 2016
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
227
8,821
0
01 Oct 2015
Bayesian Dark Knowledge
Masashi Sugiyama
Vivek Rathod
R. Garnett
Max Welling
BDL
UQCV
74
258
0
14 Jun 2015
Compressing Neural Networks with the Hashing Trick
Wenlin Chen
James T. Wilson
Stephen Tyree
Kilian Q. Weinberger
Yixin Chen
132
1,191
0
19 Apr 2015
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
304
19,580
0
09 Mar 2015
Training deep neural networks with low precision multiplications
Matthieu Courbariaux
Yoshua Bengio
J. David
MQ
64
49
0
22 Dec 2014
FitNets: Hints for Thin Deep Nets
Adriana Romero
Nicolas Ballas
Samira Ebrahimi Kahou
Antoine Chassang
C. Gatta
Yoshua Bengio
FedML
270
3,870
0
19 Dec 2014
Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation
Emily L. Denton
Wojciech Zaremba
Joan Bruna
Yann LeCun
Rob Fergus
FAtt
153
1,688
0
02 Apr 2014
Do Deep Nets Really Need to be Deep?
Lei Jimmy Ba
R. Caruana
160
2,117
0
21 Dec 2013
Predicting Parameters in Deep Learning
Misha Denil
B. Shakibi
Laurent Dinh
MarcÁurelio Ranzato
Nando de Freitas
OOD
168
1,315
0
03 Jun 2013
1