ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.08075
  4. Cited By
Analyzing Compression Techniques for Computer Vision

Analyzing Compression Techniques for Computer Vision

14 May 2023
Maniratnam Mandal
Imran Khan
ArXivPDFHTML

Papers citing "Analyzing Compression Techniques for Computer Vision"

17 / 17 papers shown
Title
Carbon Emissions and Large Neural Network Training
Carbon Emissions and Large Neural Network Training
David A. Patterson
Joseph E. Gonzalez
Quoc V. Le
Chen Liang
Lluís-Miquel Munguía
D. Rothchild
David R. So
Maud Texier
J. Dean
AI4CE
331
665
0
21 Apr 2021
Optimal stable Ornstein-Uhlenbeck regression
Optimal stable Ornstein-Uhlenbeck regression
Hiroki Masuda
27
30
0
08 Jun 2020
An Overview of Neural Network Compression
An Overview of Neural Network Compression
James OÑeill
AI4CE
81
99
0
05 Jun 2020
Improved Knowledge Distillation via Teacher Assistant
Improved Knowledge Distillation via Teacher Assistant
Seyed Iman Mirzadeh
Mehrdad Farajtabar
Ang Li
Nir Levine
Akihiro Matsukawa
H. Ghasemzadeh
92
1,074
0
09 Feb 2019
Quantizing deep convolutional networks for efficient inference: A
  whitepaper
Quantizing deep convolutional networks for efficient inference: A whitepaper
Raghuraman Krishnamoorthi
MQ
119
1,013
0
21 Jun 2018
Deep Networks with Stochastic Depth
Deep Networks with Stochastic Depth
Gao Huang
Yu Sun
Zhuang Liu
Daniel Sedra
Kilian Q. Weinberger
185
2,352
0
30 Mar 2016
Group Equivariant Convolutional Networks
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
142
1,930
0
24 Feb 2016
Binarized Neural Networks
Itay Hubara
Daniel Soudry
Ran El-Yaniv
MQ
161
1,349
0
08 Feb 2016
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
227
8,821
0
01 Oct 2015
Bayesian Dark Knowledge
Bayesian Dark Knowledge
Masashi Sugiyama
Vivek Rathod
R. Garnett
Max Welling
BDL
UQCV
74
258
0
14 Jun 2015
Compressing Neural Networks with the Hashing Trick
Compressing Neural Networks with the Hashing Trick
Wenlin Chen
James T. Wilson
Stephen Tyree
Kilian Q. Weinberger
Yixin Chen
132
1,191
0
19 Apr 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
304
19,580
0
09 Mar 2015
Training deep neural networks with low precision multiplications
Training deep neural networks with low precision multiplications
Matthieu Courbariaux
Yoshua Bengio
J. David
MQ
64
49
0
22 Dec 2014
FitNets: Hints for Thin Deep Nets
FitNets: Hints for Thin Deep Nets
Adriana Romero
Nicolas Ballas
Samira Ebrahimi Kahou
Antoine Chassang
C. Gatta
Yoshua Bengio
FedML
270
3,870
0
19 Dec 2014
Exploiting Linear Structure Within Convolutional Networks for Efficient
  Evaluation
Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation
Emily L. Denton
Wojciech Zaremba
Joan Bruna
Yann LeCun
Rob Fergus
FAtt
153
1,688
0
02 Apr 2014
Do Deep Nets Really Need to be Deep?
Do Deep Nets Really Need to be Deep?
Lei Jimmy Ba
R. Caruana
160
2,117
0
21 Dec 2013
Predicting Parameters in Deep Learning
Predicting Parameters in Deep Learning
Misha Denil
B. Shakibi
Laurent Dinh
MarcÁurelio Ranzato
Nando de Freitas
OOD
168
1,315
0
03 Jun 2013
1